Protein kinase SGK mediates survival signals by phosphorylating the forkhead transcription factor FKHRL1 (FOXO3a)

被引:712
作者
Brunet, A
Park, J
Tran, H
Hu, LS
Hemmings, BA
Greenberg, ME [1 ]
机构
[1] Harvard Univ, Sch Med, Childrens Hosp, Div Neurosci, Boston, MA 02115 USA
[2] Harvard Univ, Sch Med, Dept Neurobiol, Boston, MA 02115 USA
[3] Friedrich Miescher Inst, CH-4058 Basel, Switzerland
关键词
D O I
10.1128/MCB.21.3.952-965.2001
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Serum- and glucocorticoid-inducible kinases (SGKs) form a novel family of serine/threonine kinases that are activated in response to a variety of extracellular stimuli. SGKs are related to Akt (also called PKB), a serine/threonine kinase that plays a crucial role in promoting cell survival. Like Akt, SGKs are activated by the phosphoinositide-3 kinase (PI3K) and translocate to the nucleus upon growth factor stimulation. However the physiological substrates and cellular functions of SGKs remained to be identified. We hypothesized that SGKs regulate cellular functions in concert with Akt by phosphorylating common targets within the nucleus. The best-characterized nuclear substrates of Akt are transcription factors of the Forkhead family. Akt phosphorylates Forkhead transcription factors such as FKHRL1, leading to FKHRL1's exit from the nucleus and the consequent shutoff of FKHRL1 target genes. We show here that SGK1, like Akt, promotes cell survival and that it does so in part by phosphorylating and inactivating FKHRL1. However, SGK and Akt display differences with respect to the efficacy with which they phosphorylate the three regulatory sites on FKHRL1. While both kinases can phosphorylate Thr-32, SGK displays a marked preference for Ser-315 whereas Akt favors Ser-253. These findings suggest that SGK and Akt may coordinately regulate the function of FKHRL1 by phosphorylating this transcription factor at distinct sites. The efficient phosphorylation of these three sites on FKHRL1 by SGK and Akt appears to be critical to the ability of growth factors to suppress FKHRL1-dependent transcription, thereby preventing FKHRL1 from inducing cell cycle arrest and apoptosis. These findings indicate that SGK acts in concert with Akt to propagate the effects of PI3K activation within the nucleus and to mediate the biological outputs of PI3K signaling, including cell survival and cell cycle progression.
引用
收藏
页码:952 / 965
页数:14
相关论文
共 53 条
  • [11] Epithelial sodium channel regulated by aldosterone-induced protein sgk
    Chen, SY
    Bhargava, A
    Mastroberardino, L
    Meijer, OC
    Wang, J
    Buse, P
    Firestone, GL
    Verrey, F
    Pearce, D
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (05) : 2514 - 2519
  • [12] Phosphorylation and activation of cAMP-dependent protein kinase by phosphoinositide-dependent protein kinase
    Cheng, XD
    Ma, YL
    Moore, M
    Hemmings, BA
    Taylor, SS
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (17) : 9849 - 9854
  • [13] Regulation of protein kinase C ζ by PI 3-kinase and PDK-1
    Chou, MM
    Hou, WM
    Johnson, J
    Graham, LK
    Lee, MH
    Chen, CS
    Newton, AC
    Schaffhausen, BS
    Toker, A
    [J]. CURRENT BIOLOGY, 1998, 8 (19) : 1069 - 1077
  • [14] Expression of serum- and glucocorticoid-regulated kinase (sgk) mRNA is up-regulated by GM-CSF and other proinflammatory mediators in human granulocytes
    Cowling, RT
    Birnboim, HC
    [J]. JOURNAL OF LEUKOCYTE BIOLOGY, 2000, 67 (02) : 240 - 248
  • [15] 14-3-3 proteins and survival kinases cooperate to inactivate BAD by BH3 domain phosphorylation
    Datta, SR
    Katsov, A
    Hu, L
    Petros, A
    Fesik, SW
    Yaffe, MB
    Greenberg, ME
    [J]. MOLECULAR CELL, 2000, 6 (01) : 41 - 51
  • [16] Cellular survival: a play in three Akts
    Datta, SR
    Brunet, A
    Greenberg, ME
    [J]. GENES & DEVELOPMENT, 1999, 13 (22) : 2905 - 2927
  • [17] Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery
    Datta, SR
    Dudek, H
    Tao, X
    Masters, S
    Fu, HA
    Gotoh, Y
    Greenberg, ME
    [J]. CELL, 1997, 91 (02) : 231 - 241
  • [18] The serum and glucocorticoid kinase sgk increases the abundance of epithelial sodium channels in the plasma membrane of Xenopus oocytes
    de la Rosa, DA
    Zhang, P
    Náray-Fejes-Tóth, A
    Fejes-Tóth, G
    Canessa, CM
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (53) : 37834 - 37839
  • [19] DEL PL, 1997, SCIENCE, V278, P687
  • [20] Mechanisms and consequences of activation of protein kinase B/Akt
    Downward, J
    [J]. CURRENT OPINION IN CELL BIOLOGY, 1998, 10 (02) : 262 - 267