A path-following interior-point algorithm for linear and quadratic problems

被引:21
作者
Wright, SJ [1 ]
机构
[1] ARGONNE NATL LAB,DIV MATH & COMP SCI,ARGONNE,IL 60439
关键词
path-following interior-point methods; linear complementarity problems; Q-subquadratic convergence;
D O I
10.1007/BF02206813
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We describe an algorithm for the monotone linear complementarity problem (LCP) that converges from any positive, not necessarily feasible, starting point and exhibits polynomial complexity if some additional assumptions are made on the starting point. If the problem has a strictly complementarity solution, the method converges subquadratically. We show that the algorithm and its convergence properties extend readily to the mixed monotone linear complementarity problem and, hence, to all the usual formulations of the linear programming and convex quadratic programming problems.
引用
收藏
页码:103 / 130
页数:28
相关论文
共 14 条
[1]  
Cottle RW., 1992, LINEAR COMPLEMENTARI
[2]   GENERALIZED LINEAR COMPLEMENTARITY-PROBLEMS [J].
GULER, O .
MATHEMATICS OF OPERATIONS RESEARCH, 1995, 20 (02) :441-448
[3]   ERROR-BOUNDS FOR NONDEGENERATE MONOTONE LINEAR COMPLEMENTARITY-PROBLEMS [J].
MANGASARIAN, OL .
MATHEMATICAL PROGRAMMING, 1990, 48 (03) :437-445
[4]   MONOTONE (NONLINEAR) OPERATORS IN HILBERT SPACE [J].
MINTY, GJ .
DUKE MATHEMATICAL JOURNAL, 1962, 29 (03) :341-&
[5]  
MIZUNO S, 1993, 1006 CORN U SCH OP R
[6]  
Monteiro R. D. C., 1994, Computational Optimization and Applications, V3, P131, DOI 10.1007/BF01300971
[7]   SUPERLINEAR PRIMAL-DUAL AFFINE SCALING ALGORITHMS FOR LCP [J].
MONTEIRO, RDC ;
WRIGHT, SJ .
MATHEMATICAL PROGRAMMING, 1995, 69 (02) :311-333
[8]  
POTRA FA, 1992, IN PRESS SIAM J OPTI
[9]   AN INFEASIBLE-INTERIOR-POINT ALGORITHM FOR LINEAR COMPLEMENTARITY-PROBLEMS [J].
WRIGHT, SJ .
MATHEMATICAL PROGRAMMING, 1994, 67 (01) :29-51
[10]  
WRIGHT SJ, 1993, OPTIMIZATION METHODS, V2, P79