Moduli spaces of decomposable morphisms of sheaves and quotients by non-reductive groups

被引:9
作者
Drézet, JM
Trautmann, G
机构
[1] Inst Math, UMR 7586 CNRS, F-75251 Paris 05, France
[2] Univ Kaiserslautern, Fachbereich Math, D-67663 Kaiserslautern, Germany
关键词
algebraic quotients; good quotients; non-reductive groups; moduli spaces;
D O I
10.5802/aif.1941
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extend the methods of geometric invariant theory to actions of non-reductive groups in the case of homomorphisms between decomposable sheaves whose automorphism groups are non-reductive. Given a linearization of the natural action of the group Aut(E) x Aut(F) on Hom(E,F), a homomorphism is called stable if its orbit with respect to the unipotent radical is contained in the stable locus with respect to the natural reductive subgroup of the automorphism group. We encounter effective numerical conditions for a linearization such that the corresponding open set of semi-stable homomorphisms admits a good and projective quotient in the sense of geometric invariant theory, and that this quotient is in addition a geometric quotient on the set of stable homomorphisms.
引用
收藏
页码:107 / +
页数:87
相关论文
共 36 条
[1]  
Bialynicki-Birula A., 1998, C MATH, V77, P97
[2]  
BIALYNICKIBIRUL.A, 1996, TRANSFORM GROUPS, V1, P153
[3]  
DIXMIER J, 1981, ADV MATH SUPPL STU A, V7, P327
[4]  
DIXMIER J, 1989, GAZETTE SOC MATH FRA
[5]  
DOLGACHEV H, ALGGEOM9402008
[6]   Alternative moduli varieties [J].
Drézet, JM .
ANNALES DE L INSTITUT FOURIER, 1999, 49 (01) :57-+
[7]  
DREZET JM, 1985, ANN SCI ECOLE NORM S, V18, P193
[8]   Algebraic quotients by reductive groups and moduli varieties of complexes [J].
Drezet, JM .
INTERNATIONAL JOURNAL OF MATHEMATICS, 1998, 9 (07) :769-819
[9]   MANIFOLDS OF EXTREMAL MODULI OF SEMISTABLE SHEAVES ON P2(C) [J].
DREZET, JM .
MATHEMATISCHE ANNALEN, 1991, 290 (04) :727-770
[10]  
DREZET JM, 1987, J REINE ANGEW MATH, V380, P14