Edge diffraction of complex rays

被引:7
作者
Chapman, SJ [1 ]
Lawry, JM [1 ]
Ockendon, JR [1 ]
Saward, VH [1 ]
机构
[1] Math Inst, Oxford OX1 3LB, England
关键词
D O I
10.1016/S0165-2125(00)00062-7
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The extension of the geometrical theory of diffraction (GTD) to complex rays is considered. The key difference with real rays arises in the determination of the regions of existence of the incident and reflected fields, which are governed by Stokes phenomenon. The procedure is demonstrated using the simple example of diffraction by a finite plate. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:41 / 49
页数:9
相关论文
共 7 条
[1]   SHADOWING AN INHOMOGENEOUS PLANE-WAVE BY AN EDGE [J].
BERTONI, HL ;
GREEN, AC ;
FELSEN, LB .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1978, 68 (07) :983-989
[2]   On the theory of complex rays [J].
Chapman, SJ ;
Lawry, JMH ;
Ockendon, JR ;
Tew, RH .
SIAM REVIEW, 1999, 41 (03) :417-509
[3]   COMPLEX RAYS WITH AN APPLICATION TO GAUSSIAN BEAMS [J].
KELLER, JB ;
STREIFER, W .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1971, 61 (01) :40-&
[4]   GEOMETRICAL THEORY OF DIFFRACTION [J].
KELLER, JB .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1962, 52 (02) :116-+
[5]  
KRATSOV YA, 1971, RADIOPHYS QUANTUM EL, V10, P719
[6]  
SOMMERFELD A., 1896, Math. Ann, V47, P317, DOI DOI 10.1007/BF01447273
[7]   APPLICATION OF COMPLEX RAY TRACING TO SCATTERING PROBLEMS [J].
WANG, WD ;
DESCHAMPS, GA .
PROCEEDINGS OF THE IEEE, 1974, 62 (11) :1541-1551