On the minimum weight of simple full-length array LDPC codes

被引:18
作者
Sugiyama, Kenji [1 ]
Kaji, Yuichi [1 ]
机构
[1] Nara Inst Sci & Technol, Grad Sch Informat Sci, Ikoma 6300101, Japan
关键词
LDPC code; simple full-length array LDPC code; minimum weight; minimum distance;
D O I
10.1093/ietfec/e91-a.6.1502
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We investigate the minimum weights of simple full-length array LDPC codes (SFA-LDPC codes). The SFA-LDPC codes are a subclass of LDPC codes, and constructed algebraically according to two integer parameters p and j. Mittelholzer and Yang et al. have studied the minimum weights of SFA-LDPC codes, but the exact minimum weights of the codes are not known except for some small p and j. In this paper, we show that the minimum weights of the SFA-LDPC codes with j = 4 and j = 5 are upper-bounded by 10 and 12, respectively, independent from the prime number p. By combining the results with Yang's lower-bound limits, we can conclude that the minimum weights of the SFA-LDPC codes with j = 4 and p > 7 are exactly 10 and those of the SFA-LDPC codes with j = 5 are 10 or 12.
引用
收藏
页码:1502 / 1508
页数:7
相关论文
共 12 条
[1]   NEW ARRAY CODES FOR MULTIPLE PHASED BURST CORRECTION [J].
BLAUM, M ;
ROTH, RM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1993, 39 (01) :66-77
[2]  
FAN JL, 2000, P 2 INT S TURB COD R, P543
[3]   A SURVEY OF ARRAY ERROR CONTROL CODES [J].
FARRELL, PG .
EUROPEAN TRANSACTIONS ON TELECOMMUNICATIONS, 1992, 3 (05) :441-454
[4]   Quasi-cyclic low-density parity-check codes from circulant permutation matrices [J].
Fossorier, MPC .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (08) :1788-1793
[5]  
Hirotomo M, 2005, 2005 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), VOLS 1 AND 2, P2166
[6]  
HU XY, 2004, P IEEE INT C COMM PA
[7]  
MacKay D., 1999, IMA WORKSH COD SYST
[8]   Efficient encoding and minimum distance bounds of Reed-Solomon-type array codes [J].
Mittelholzer, T .
ISIT: 2002 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2002, :282-282
[9]  
SUGIYAMA K, 2008, 2008001 NAIST
[10]  
SUGIYAMA K, 2006, P INT S INF THEOR IT, P366