Products of Bessel functions and associated polynomials

被引:5
作者
Dattoli, Giuseppe [1 ]
Di Palma, Emanuele [1 ]
Sabia, Elio [1 ]
Licciardi, Silvia [1 ,2 ]
机构
[1] ENEA, Ctr Ric Frascati, I-00044 Rome, Italy
[2] Univ Palermo, Dept Math, I-90123 Palermo, Italy
关键词
Bessel functions; Hermite polynomials; Umbral calculus;
D O I
10.1016/j.amc.2015.05.085
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Symbolic methods of umbral nature are exploited to derive series expansion for the products of Bessel functions. It is shown that the product of two cylindrical Bessel functions can be written in terms of Jacobi polynomials. The procedure is extended to products of an arbitrary number of functions and the link with previous researchers is discussed. We show that the technique we propose and the use of the Ramanujan master theorem allow the derivation of integrals of practical interest. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:507 / 514
页数:8
相关论文
共 14 条
  • [1] Andrews LC., 1985, Special Functions for Engineers and Applied Mathematicians
  • [2] Symbolic methods for the evaluation of sum rules of Bessel functions
    Babusci, D.
    Dattoli, G.
    Gorska, K.
    Penson, K. A.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (07)
  • [3] Babusci D., ARXIV11033947V1MATHP
  • [4] Babusci D., 2010, RT201058ENEA, P297
  • [5] Babusci D., 2015, FAR E J MATH SCI, V96, P661
  • [6] On powers of Bessel functions
    Bender, CM
    Brody, DC
    Meister, BK
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (01) : 309 - 314
  • [7] Berndt B. C., 1985, RAMANUJANS NOTEBOO 1, P298
  • [8] On multiple sums of special functions
    Brychkov, Yu. A.
    [J]. INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2010, 21 (12) : 877 - 884
  • [9] Cholewinski F. M., 1988, J AM MATH SOC, V75
  • [10] Laguerre and generalized hermite polynomials: the point of view of the operational method
    Dattoli, G
    [J]. INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2004, 15 (02) : 93 - 99