Optical Control of Plasmonic Bloch Modes on Periodic Nanostructures

被引:23
作者
Gjonaj, B. [1 ]
Aulbach, J. [1 ]
Johnson, P. M. [1 ]
Mosk, A. P. [2 ,3 ]
Kuipers, L. [1 ]
Lagendijk, A. [1 ]
机构
[1] FOM, Inst Atom & Mol Phys AMOLF, NL-1098 XG Amsterdam, Netherlands
[2] Univ Twente, Fac Sci & Technol, NL-7500 AE Enschede, Netherlands
[3] Univ Twente, MESA Inst Nanotechnol, NL-7500 AE Enschede, Netherlands
关键词
Plasmonics; wavefront shaping; interferometry; microscopy; Bloch modes; STRUCTURED-ILLUMINATION MICROSCOPY; LIGHT; ANTENNAS;
D O I
10.1021/nl204071e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We study and actively control the coherent properties of surface plasmon polaritons (SPPs) optically excited on a nanohole array. Amplitude and phase of the optical excitation are externally controlled via a digital spatial light modulator (SLM) and SPP interference fringe patterns are designed and observed with high contrast. Our interferometric observations reveal SPPs dressed with the Bloch modes of the periodic nanostructure. The momentum associated with these dressed plasmons (DP) is highly dependent on the grating period and fully matches our theoretical predictions. We show that the momentum of DP waves can, in principle, exceed the SPP momentum. Actively controlling DP waves via programmable phase patterns offers the potential for high field confinement applicable in lithography, surface enhanced Raman scattering, and plasmonic structured illumination microscopy.
引用
收藏
页码:546 / 550
页数:5
相关论文
共 29 条
[1]   Surface plasmon subwavelength optics [J].
Barnes, WL ;
Dereux, A ;
Ebbesen, TW .
NATURE, 2003, 424 (6950) :824-830
[2]   Subwavelength dynamic focusing in plasmonic nanostructures using time reversal [J].
Bartal, Guy ;
Lerosey, Geoffroy ;
Zhang, Xiang .
PHYSICAL REVIEW B, 2009, 79 (20)
[3]   Four-level polarization discriminator based on a surface plasmon polaritonic crystal [J].
Benetou, M. I. ;
Thomsen, B. C. ;
Bayvel, P. ;
Dickson, W. ;
Zayats, A. V. .
APPLIED PHYSICS LETTERS, 2011, 98 (11)
[4]   Metamaterials for Enhanced Polarization Conversion in Plasmonic Excitation [J].
Feng, Liang ;
Mizrahi, Amit ;
Zamek, Steve ;
Liu, Zhaowei ;
Lomakin, Vitaliy ;
Fainman, Yeshaiahu .
ACS NANO, 2011, 5 (06) :5100-5106
[5]  
Gjonaj B, 2011, NAT PHOTONICS, V5, P360, DOI [10.1038/nphoton.2011.57, 10.1038/NPHOTON.2011.57]
[6]   Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution [J].
Gustafsson, MGL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (37) :13081-13086
[7]   OPTICAL CONSTANTS OF NOBLE METALS [J].
JOHNSON, PB ;
CHRISTY, RW .
PHYSICAL REVIEW B, 1972, 6 (12) :4370-4379
[8]   Coherent Control of Nanoscale Light Localization in Metamaterial: Creating and Positioning Isolated Subwavelength Energy Hot Spots [J].
Kao, T. S. ;
Jenkins, S. D. ;
Ruostekoski, J. ;
Zheludev, N. I. .
PHYSICAL REVIEW LETTERS, 2011, 106 (08)
[9]   Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures [J].
Kim, DS ;
Hohng, SC ;
Malyarchuk, V ;
Yoon, YC ;
Ahn, YH ;
Yee, KJ ;
Park, JW ;
Kim, J ;
Park, QH ;
Lienau, C .
PHYSICAL REVIEW LETTERS, 2003, 91 (14)
[10]   Superresolution Moire Mapping of Particle Plasmon Modes [J].
Koller, D. M. ;
Hohenester, U. ;
Hohenau, A. ;
Ditlbacher, H. ;
Reil, F. ;
Galler, N. ;
Aussenegg, F. R. ;
Leitner, A. ;
Truegler, A. ;
Krenn, J. R. .
PHYSICAL REVIEW LETTERS, 2010, 104 (14)