The DnaK/DnaJ chaperone machinery of Salmonella enterica serovar typhimurium is essential for invasion of epithelial cells and survival within macrophages, leading to systemic infection

被引:84
作者
Takaya, A
Tomoyasu, T
Matsui, H
Yamamoto, T [1 ]
机构
[1] Chiba Univ, Grad Sch Pharmaceut Sci, Dept Microbiol & Mol Genet, Chiba 2638522, Japan
[2] Kitasato Univ, Kitasato Inst Life Sci, Dept Infect Control & Immunol, Tokyo 1088641, Japan
关键词
D O I
10.1128/IAI.72.3.1364-1373.2004
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Salmonella enterica serovar Typhimurium, similar to various facultative intracellular pathogens, has been shown to respond to the hostile conditions inside macrophages of the host organism by inducing stress proteins, such as DnaK. DnaK forms a chaperone machinery with the cochaperones DnaJ and GrpE. To elucidate the role of the DnaK chaperone machinery in the pathogenesis of S. enterica serovar Typhimurium, we first constructed an insertional mutation in the dnaK-dnaJ operon of pathogenic strain chi3306. The DnaK/DnaJ-depleted mutant was temperature sensitive for growth, that is, nonviable above 39degreesC. We then isolated a spontaneously occurring revertant of the dnaK-dnaJ-disrupted mutant at 39degreesC and used it for infection of mice. The mutant lost the ability to cause a lethal systemic disease in mice. The impaired ability for virulence was restored when a functional copy of the dnaK-dnaJ operon was provided, suggesting that the DnaK/DnaJ chaperone machinery is required by Salmonella for the systemic infection of mice. This result also indicates that with respect to the DnaK/DnaJ chaperone machinery, the cellular requirements for growth at a high temperature are not identical to the cellular requirements for the pathogenesis of Salmonella. Macrophage survival assays revealed that the DnaK/DnaJ-depleted mutant could not survive or proliferate at all within macrophages. Of further interest are the findings that the mutant could neither invade cultured epithelial cells nor secrete any of the invasion proteins encoded within Salmonella pathogenicity island 1. This is the first time that the DnaK/DnaJ chaperone machinery has been shown to be involved in bacterial invasion of epithelial cells.
引用
收藏
页码:1364 / 1373
页数:10
相关论文
共 52 条
[1]   SALMONELLA-TYPHIMURIUM ACTIVATES VIRULENCE GENE-TRANSCRIPTION WITHIN ACIDIFIED MACROPHAGE PHAGOSOMES [J].
ARANDA, CMA ;
SWANSON, JA ;
LOOMIS, WP ;
MILLER, SI .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (21) :10079-10083
[2]   MAJOR HEAT-SHOCK GENE OF DROSOPHILA AND THE ESCHERICHIA-COLI HEAT-INDUCIBLE DNAK GENE ARE HOMOLOGOUS [J].
BARDWELL, JCA ;
CRAIG, EA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1984, 81 (03) :848-852
[3]   INDUCTION OF SALMONELLA STRESS PROTEINS UPON INFECTION OF MACROPHAGES [J].
BUCHMEIER, NA ;
HEFFRON, F .
SCIENCE, 1990, 248 (4956) :730-732
[4]   INHIBITION OF MACROPHAGE PHAGOSOME-LYSOSOME FUSION BY SALMONELLA-TYPHIMURIUM [J].
BUCHMEIER, NA ;
HEFFRON, F .
INFECTION AND IMMUNITY, 1991, 59 (07) :2232-2238
[5]   Macrophage-dependent induction of the Salmonella pathogenicity island 2 type III secretion system and its role in intracellular survival [J].
Cirillo, DM ;
Valdivia, RH ;
Monack, DM ;
Falkow, S .
MOLECULAR MICROBIOLOGY, 1998, 30 (01) :175-188
[6]   PREFERENTIAL INTERACTION OF SALMONELLA-TYPHIMURIUM WITH MOUSE PEYERS PATCH M-CELLS [J].
CLARK, MA ;
JEPSON, MA ;
SIMMONS, NL ;
HIRST, BH .
RESEARCH IN MICROBIOLOGY, 1994, 145 (07) :543-552
[7]   Molecular basis of the interaction of Salmonella with the intestinal mucosa [J].
Darwin, KH ;
Miller, VL .
CLINICAL MICROBIOLOGY REVIEWS, 1999, 12 (03) :405-+
[8]   CONSTRUCTION OF AN EAE DELETION MUTANT OF ENTEROPATHOGENIC ESCHERICHIA-COLI BY USING A POSITIVE-SELECTION SUICIDE VECTOR [J].
DONNENBERG, MS ;
KAPER, JB .
INFECTION AND IMMUNITY, 1991, 59 (12) :4310-4317
[9]   MUTANTS OF SALMONELLA-TYPHIMURIUM THAT CANNOT SURVIVE WITHIN THE MACROPHAGE ARE AVIRULENT [J].
FIELDS, PI ;
SWANSON, RV ;
HAIDARIS, CG ;
HEFFRON, F .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1986, 83 (14) :5189-5193
[10]   Exploitation of mammalian host cell functions by bacterial pathogens [J].
Finlay, BB ;
Cossart, P .
SCIENCE, 1997, 276 (5313) :718-725