Equivalence of critical scaling laws for many-body entanglement in the Lipkin-Meshkov-Glick model

被引:158
作者
Orus, Roman [1 ]
Dusuel, Sebastien [2 ]
Vidal, Julien [3 ]
机构
[1] Univ Queensland, Sch Phys Sci, Brisbane, Qld 4072, Australia
[2] Lycee Louis Thuillier, F-80098 Amiens 3, France
[3] Univ Paris 06, CNRS, UMR 7600, Lab Phys Theor Mat Condensee, F-75252 Paris 05, France
关键词
D O I
10.1103/PhysRevLett.101.025701
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We establish a relation between several entanglement properties in the Lipkin-Meshkov-Glick model, which is a system of mutually interacting spins embedded in a magnetic field. We provide analytical proofs that the single-copy entanglement and the global geometric entanglement of the ground state close to and at criticality behave as the entanglement entropy. These results are in deep contrast to what is found in one- dimensional spin systems where these three entanglement measures behave differently.
引用
收藏
页数:4
相关论文
共 36 条
[1]   Entanglement in many-body systems [J].
Amico, Luigi ;
Fazio, Rosario ;
Osterloh, Andreas ;
Vedral, Vlatko .
REVIEWS OF MODERN PHYSICS, 2008, 80 (02) :517-576
[2]   Entanglement entropy beyond the free case [J].
Barthel, Thomas ;
Dusuel, Sebastien ;
Vidal, Julien .
PHYSICAL REVIEW LETTERS, 2006, 97 (22)
[3]   Concentrating partial entanglement by local operations [J].
Bennett, CH ;
Bernstein, HJ ;
Popescu, S ;
Schumacher, B .
PHYSICAL REVIEW A, 1996, 53 (04) :2046-2052
[4]   QUANTUM SOURCE OF ENTROPY FOR BLACK-HOLES [J].
BOMBELLI, L ;
KOUL, RK ;
LEE, J ;
SORKIN, RD .
PHYSICAL REVIEW D, 1986, 34 (02) :373-383
[5]  
BOTERO A, ARXIV07083391
[6]   LARGE-SIZE CRITICAL-BEHAVIOR OF INFINITELY COORDINATED SYSTEMS [J].
BOTET, R ;
JULLIEN, R .
PHYSICAL REVIEW B, 1983, 28 (07) :3955-3967
[7]   QUANTUM TUNNELING OF MAGNETIZATION IN SMALL FERROMAGNETIC PARTICLES [J].
CHUDNOVSKY, EM ;
GUNTHER, L .
PHYSICAL REVIEW LETTERS, 1988, 60 (08) :661-664
[8]   Quantum superposition states of Bose-Einstein condensates [J].
Cirac, JI ;
Lewenstein, M ;
Molmer, K ;
Zoller, P .
PHYSICAL REVIEW A, 1998, 57 (02) :1208-1218
[9]   Continuous unitary transformations and finite-size scaling exponents in the Lipkin-Meshkov-Glick model [J].
Dusuel, S ;
Vidal, J .
PHYSICAL REVIEW B, 2005, 71 (22)
[10]   Finite-size scaling exponents of the Lipkin-Meshkov-Glick model [J].
Dusuel, S ;
Vidal, J .
PHYSICAL REVIEW LETTERS, 2004, 93 (23)