Review of artificial neural networks for gasoline, diesel and homogeneous charge compression ignition engine

被引:94
作者
Veza, Ibham [1 ]
Afzal, Asif [2 ,3 ]
Mujtaba, M. A. [4 ]
Hoang, Anh Tuan [5 ]
Balasubramanian, Dhinesh [6 ,7 ,8 ]
Sekar, Manigandan [9 ]
Fattah, I. M. R. [10 ]
Soudagar, M. E. M. [11 ]
EL-Seesy, Ahmed, I [12 ,13 ]
Djamari, D. W. [14 ]
Hananto, A. L. [15 ]
Putra, N. R. [16 ]
Tamaldin, Noreffendy [1 ]
机构
[1] Univ Teknikal Malaysia Melaka, Fac Mech Engn, Durian Tunggal 76100, Melaka, Malaysia
[2] PA Coll Engn, Dept Mech Engn, Mangaluru 574153, India
[3] Visvesvaraya Technol Univ, Belagavi, India
[4] Univ Engn & Technol, Dept Mech Engn, New Campus Lahore, Lahore, Pakistan
[5] HUTECH Univ, Inst Engn, Ho Chi Minh City, Vietnam
[6] Mepco Schlenk Engn Coll, Dept Mech Engn, Sivakasi, India
[7] Khon Kaen Univ, Fac Engn, Mech Engn, Khon Kaen, Thailand
[8] Khon Kaen Univ, Ctr Alternat Energy Res & Dev, Khon Kaen, Thailand
[9] Sathyabama Inst Sci & Technol, Dept Aeronaut Engn, Chennai, Tamil Nadu, India
[10] Univ Technol Sydney, Fac Engn & IT, Ctr Green Technol, Sydney, NSW 2007, Australia
[11] Glocal Univ, Sch Technol, Dept Mech Engn, Delhi Yamunotri Marg SH-57, Mirzapur Pole 247121, Uttar Pradesh, India
[12] Banha Univ, Benha Fac Engn, Mech Engn Dept, Banha 13512, Egypt
[13] Jiangsu Univ, Inst Energy Res, 301 Xuefu Rd, Zhenjiang 212013, Jiangsu, Peoples R China
[14] Sampoerna Univ, Mech Engn Study Program, Jakarta, Indonesia
[15] Univ Buana Perjuangan Karawang Teluk Jambe, Fac Engn & Comp Sci, Karawang 41361, Indonesia
[16] UTM, Ibnu Sina Inst Sci & Ind Res, Ctr Lipid Engn & Appl Res CLEAR, Johor Baharu 81310, Malaysia
关键词
Artificial neural network; SURFACE METHODOLOGY RSM; ANN BASED PREDICTION; EXHAUST EMISSIONS; HCCI ENGINE; OPERATING PARAMETERS; PERFORMANCE; COMBUSTION; BIODIESEL; OPTIMIZATION; MODEL;
D O I
10.1016/j.aej.2022.01.072
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In automotive applications, artificial neural network (ANN) is now considered as a favorable prediction tool. Since it does not need an understanding of the system or its underlying physics, an ANN model can be beneficial especially when the system is too complicated, and it is too costly to model it using a simulation program. Therefore, using ANN to model an internal combustion engine has been a growing research area in the last decade. Despite its promising capabilities, the use of ANN for engine applications needs deeper examination and further improvement.
引用
收藏
页码:8363 / 8391
页数:29
相关论文
共 129 条
  • [1] Machine learning technology in biodiesel research: A review
    Aghbashlo, Mortaza
    Peng, Wanxi
    Tabatabaei, Meisam
    Kalogirou, Soteris A.
    Soltanian, Salman
    Hosseinzadeh-Bandbafha, Homa
    Mahian, Omid
    Lam, Su Shiung
    [J]. PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2021, 85
  • [2] The use of ELM-WT (extreme learning machine with wavelet transform algorithm) to predict exergetic performance of a DI diesel engine running on diesel/biodiesel blends containing polymer waste
    Aghbashlo, Mortaza
    Shamshirband, Shahaboddin
    Tabatabaei, Meisam
    Yee, Por Lip
    Larimi, Yaser Nabavi
    [J]. ENERGY, 2016, 94 : 443 - 456
  • [3] Artificial neural networks modelling of the performance parameters of the Stirling engine
    Ahmadi, Mohammad H.
    Mehrpooya, Mehdi
    Khalilpoor, Nima
    [J]. INTERNATIONAL JOURNAL OF AMBIENT ENERGY, 2016, 37 (04) : 341 - 347
  • [4] Internal combustion engines: Progress and prospects
    Alagumalai, Avinash
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2014, 38 : 561 - 571
  • [5] Optimized ANN-GA and experimental analysis of the performance and combustion characteristics of HCCI engine
    Anarghya, A.
    Rao, Nitish
    Nayak, Nagaraj
    Tirpude, Aditi R.
    Harshith, D. N.
    Samarth, B. R.
    [J]. APPLIED THERMAL ENGINEERING, 2018, 132 : 841 - 868
  • [6] Arshad A, 2021, ALEX ENG J
  • [7] Soft computing-based modeling and emission control/reduction of a diesel engine fueled with carbon nanoparticle-dosed water/diesel emulsion fuel
    Atarod, Peyman
    Khlaife, Esmail
    Aghbashlo, Mortaza
    Tabatabaei, Meisam
    Anh Tuan Hoang
    Mobli, Hossein
    Nadian, Mohammad Hossein
    Hosseinzadeh-Bandbafha, Homa
    Mohammadi, Pouya
    Shojaei, Taha Roodbar
    Mahian, Omid
    Gu, Haiping
    Peng, Wanxi
    Lam, Su Shiung
    [J]. JOURNAL OF HAZARDOUS MATERIALS, 2021, 407
  • [8] Review on dynamic process modeling of gasification based biorefineries and bio-based heat & power plants
    Atsonios, Konstantinos
    Nesiadis, Athanasios
    Detsios, Nikolaos
    Koutita, Konstantina
    Nikolopoulos, Nikos
    Grammelis, Panagiotis
    [J]. FUEL PROCESSING TECHNOLOGY, 2020, 197
  • [9] Performance and emission prediction of a compression ignition engine fueled with biodiesel-diesel blends: A combined application of ANN and RSM based optimization
    Aydin, Mustafa
    Uslu, Samet
    Celik, M. Bahattin
    [J]. FUEL, 2020, 269
  • [10] Artificial neural network approach on forecasting diesel engine characteristics fuelled with waste frying oil biodiesel
    Babu, D.
    Thangarasu, Vinoth
    Ramanathan, Anand
    [J]. APPLIED ENERGY, 2020, 263 (263)