Stratifying individuals into non-alcoholic fatty liver disease risk levels using time series machine learning models

被引:10
作者
Ben-Assuli, Ofir [1 ]
Jacobi, Arie [1 ,7 ]
Goldman, Orit [1 ]
Shenhar-Tsarfaty, Shani [2 ,3 ,4 ]
Rogowski, Ori [2 ,3 ,4 ]
Zeltser, David [2 ,3 ,4 ]
Shapira, Itzhak [2 ,3 ,4 ]
Berliner, Shlomo [2 ,3 ,4 ]
Zelber-Sagi, Shira [5 ,6 ]
机构
[1] Ono Acad Coll, Fac Business Adm, 104 Zahal St, IL-55000 Kiryat Ono, Israel
[2] Tel Aviv Univ, Sackler Fac Med, Tel Aviv Sourasky Med Ctr, Dept Internal Med C, Weizmann 6 St, Tel Aviv, Israel
[3] Tel Aviv Univ, Sackler Fac Med, Tel Aviv Sourasky Med Ctr, Dept Internal Med D, Weizmann 6 St, Tel Aviv, Israel
[4] Tel Aviv Univ, Sackler Fac Med, Tel Aviv Sourasky Med Ctr, Dept Internal Med E, Weizmann 6 St, Tel Aviv, Israel
[5] Univ Haifa, Sch Publ Hlth, IL-3498838 Haifa, Israel
[6] Tel Aviv Med Ctr & Sch Med, Dept Gastroenterol, IL-6423906 Tel Aviv, Israel
[7] Peres Acad Ctr, Fac Business Adm, 10 Shimon Peres St, IL-7610202 Rehovot, Israel
关键词
Machine learning; Clustering models; FIBROSIS STAGE; GENERAL-POPULATION; CHRONIC CARE; WEIGHT-LOSS; ASSOCIATION; MORTALITY; NAFLD; PROGRESSION; CANCER; INDEX;
D O I
10.1016/j.jbi.2022.103986
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Non-alcoholic fatty liver disease (NAFLD) affects 25% of the population worldwide, and its prevalence is anticipated to increase globally. While most NAFLD patients are asymptomatic, NAFLD may progress to fibrosis, cirrhosis, cardiovascular disease, and diabetes. Research reports, with daunting results, show the challenge that NAFLD's burden causes to global population health. The current process for identifying fibrosis risk levels is inefficient, expensive, does not cover all potential populations, and does not identify the risk in time. Instead of invasive liver biopsies, we implemented a non-invasive fibrosis assessment process calculated from clinical data (accessed via EMRs/EHRs). We stratified patients' risks for fibrosis from 2007 to 2017 by modeling the risk in 5579 individuals. The process involved time-series machine learning models (Hidden Markov Models and Group Based Trajectory Models) profiled fibrosis risk by modeling patients' latent medical status resulted in three groups. The high-risk group had abnormal lab test values and a higher prevalence of chronic conditions. This study can help overcome the inefficient, traditional process of detecting fibrosis via biopsies (that are also medically unfeasible due to their invasive nature, the medical resources involved, and costs) at early stages. Thus longitudinal risk assessment may be used to make population-specific medical recommendations targeting early detection of high risk patients, to avoid the development of fibrosis disease and its complications as well as decrease healthcare costs.
引用
收藏
页数:16
相关论文
共 103 条
[21]  
Diebold F.X., 1993, Research Paper
[22]   Ensemble methods in machine learning [J].
Dietterich, TG .
MULTIPLE CLASSIFIER SYSTEMS, 2000, 1857 :1-15
[23]   A two-stage machine learning framework to predict heart transplantation survival probabilities over time with a monotonic probability constraint [J].
Dolatsara, Hamidreza Ahady ;
Chen, Ying-Ju ;
Evans, Christy ;
Gupta, Ashish ;
Megahed, Fadel M. .
DECISION SUPPORT SYSTEMS, 2020, 137
[24]   Increased Risk of Mortality by Fibrosis Stage in Nonalcoholic Fatty Liver Disease: Systematic Review and Meta-Analysis [J].
Dulai, Parambir S. ;
Singh, Siddharth ;
Patel, Janki ;
Soni, Meera ;
Prokop, Larry J. ;
Younossi, Zobair ;
Sebastiani, Giada ;
Ekstedt, Mattias ;
Hagstrom, Hannes ;
Nasr, Patrik ;
Stal, Per ;
Wong, Vincent Wai-Sun ;
Kechagias, Stergios ;
Hultcrantz, Rolf ;
Loomba, Rohit .
HEPATOLOGY, 2017, 65 (05) :1557-1565
[25]  
EASL, 2016, OBESITY FACTS, V9, P65, DOI [10.1159/000443344, 10.1007/s00125-016-3902-y, 10.1016/j.jhep.2015.11.004]
[26]   Fibrosis Stage Is the Strongest Predictor for Disease-Specific Mortality in NAFLD After Up to 33 Years of Follow-Up [J].
Ekstedt, Mattias ;
Hagstrom, Hannes ;
Nasr, Patrik ;
Fredrikson, Mats ;
Stal, Per ;
Kechagias, Stergios ;
Hultcrantz, Rolf .
HEPATOLOGY, 2015, 61 (05) :1547-1554
[27]   FibroGENE: A gene-based model for staging liver fibrosis [J].
Eslam, Mohammed ;
Hashem, Ahmed M. ;
Romero-Gomez, Manuel ;
Berg, Thomas ;
Dore, Gregory J. ;
Mangia, Alessandra ;
Chan, Henry Lik Yuen ;
Irving, William L. ;
Sheridan, David ;
Abate, Maria Lorena ;
Adams, Leon A. ;
Weltman, Martin ;
Bugianesi, Elisabetta ;
Spengler, Ulrich ;
Shaker, Olfat ;
Fischer, Janett ;
Mollison, Lindsay ;
Cheng, Wendy ;
Nattermann, Jacob ;
Riordan, Stephen ;
Miele, Luca ;
Kelaeng, Kebitsaone Simon ;
Ampuero, Javier ;
Ahlenstiel, Golo ;
McLeod, Duncan ;
Powell, Elizabeth ;
Liddle, Christopher ;
Douglas, Mark W. ;
Booth, David R. ;
George, Jacob .
JOURNAL OF HEPATOLOGY, 2016, 64 (02) :390-398
[28]   Fatty liver and the metabolic syndrome among Shanghai adults [J].
Fan, JG ;
Zhu, JN ;
Li, XJ ;
Chen, L ;
Lu, YS ;
Li, L ;
Dai, F ;
Li, F ;
Chen, SY .
JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, 2005, 20 (12) :1825-1832
[29]   Glycemic index, glycemic load, dietary carbohydrate, and dietary fiber intake and risk of liver and biliary tract cancers in Western Europeans [J].
Fedirko, V. ;
Lukanova, A. ;
Bamia, C. ;
Trichopolou, A. ;
Trepo, E. ;
Noethlings, U. ;
Schlesinger, S. ;
Aleksandrova, K. ;
Boffetta, P. ;
Tjonneland, A. ;
Johnsen, N. F. ;
Overvad, K. ;
Fagherazzi, G. ;
Racine, A. ;
Boutron-Ruault, M. C. ;
Grote, V. ;
Kaaks, R. ;
Boeing, H. ;
Naska, A. ;
Adarakis, G. ;
Valanou, E. ;
Palli, D. ;
Sieri, S. ;
Tumino, R. ;
Vineis, P. ;
Panico, S. ;
Bueno-de-Mesquita, H. B. ;
Siersema, P. D. ;
Peeters, P. H. ;
Weiderpass, E. ;
Skeie, G. ;
Engeset, D. ;
Quiros, J. R. ;
Zamora-Ros, R. ;
Sanchez, M. J. ;
Amiano, P. ;
Huerta, J. M. ;
Barricarte, A. ;
Johansen, D. ;
Lindkvist, B. ;
Sund, M. ;
Werner, M. ;
Crowe, F. ;
Khaw, K. T. ;
Ferrari, P. ;
Romieu, I. ;
Chuang, S. C. ;
Riboli, E. ;
Jenab, M. .
ANNALS OF ONCOLOGY, 2013, 24 (02) :543-553
[30]   Integrative Genomic Signatures Of Hepatocellular Carcinoma Derived from Nonalcoholic Fatty Liver Disease [J].
Frades, Itziar ;
Andreasson, Erik ;
Maria Mato, Jose ;
Alexandersson, Erik ;
Matthiesen, Rune ;
Martinez-Chantar, Ma Luz .
PLOS ONE, 2015, 10 (05)