Stratifying individuals into non-alcoholic fatty liver disease risk levels using time series machine learning models

被引:10
作者
Ben-Assuli, Ofir [1 ]
Jacobi, Arie [1 ,7 ]
Goldman, Orit [1 ]
Shenhar-Tsarfaty, Shani [2 ,3 ,4 ]
Rogowski, Ori [2 ,3 ,4 ]
Zeltser, David [2 ,3 ,4 ]
Shapira, Itzhak [2 ,3 ,4 ]
Berliner, Shlomo [2 ,3 ,4 ]
Zelber-Sagi, Shira [5 ,6 ]
机构
[1] Ono Acad Coll, Fac Business Adm, 104 Zahal St, IL-55000 Kiryat Ono, Israel
[2] Tel Aviv Univ, Sackler Fac Med, Tel Aviv Sourasky Med Ctr, Dept Internal Med C, Weizmann 6 St, Tel Aviv, Israel
[3] Tel Aviv Univ, Sackler Fac Med, Tel Aviv Sourasky Med Ctr, Dept Internal Med D, Weizmann 6 St, Tel Aviv, Israel
[4] Tel Aviv Univ, Sackler Fac Med, Tel Aviv Sourasky Med Ctr, Dept Internal Med E, Weizmann 6 St, Tel Aviv, Israel
[5] Univ Haifa, Sch Publ Hlth, IL-3498838 Haifa, Israel
[6] Tel Aviv Med Ctr & Sch Med, Dept Gastroenterol, IL-6423906 Tel Aviv, Israel
[7] Peres Acad Ctr, Fac Business Adm, 10 Shimon Peres St, IL-7610202 Rehovot, Israel
关键词
Machine learning; Clustering models; FIBROSIS STAGE; GENERAL-POPULATION; CHRONIC CARE; WEIGHT-LOSS; ASSOCIATION; MORTALITY; NAFLD; PROGRESSION; CANCER; INDEX;
D O I
10.1016/j.jbi.2022.103986
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Non-alcoholic fatty liver disease (NAFLD) affects 25% of the population worldwide, and its prevalence is anticipated to increase globally. While most NAFLD patients are asymptomatic, NAFLD may progress to fibrosis, cirrhosis, cardiovascular disease, and diabetes. Research reports, with daunting results, show the challenge that NAFLD's burden causes to global population health. The current process for identifying fibrosis risk levels is inefficient, expensive, does not cover all potential populations, and does not identify the risk in time. Instead of invasive liver biopsies, we implemented a non-invasive fibrosis assessment process calculated from clinical data (accessed via EMRs/EHRs). We stratified patients' risks for fibrosis from 2007 to 2017 by modeling the risk in 5579 individuals. The process involved time-series machine learning models (Hidden Markov Models and Group Based Trajectory Models) profiled fibrosis risk by modeling patients' latent medical status resulted in three groups. The high-risk group had abnormal lab test values and a higher prevalence of chronic conditions. This study can help overcome the inefficient, traditional process of detecting fibrosis via biopsies (that are also medically unfeasible due to their invasive nature, the medical resources involved, and costs) at early stages. Thus longitudinal risk assessment may be used to make population-specific medical recommendations targeting early detection of high risk patients, to avoid the development of fibrosis disease and its complications as well as decrease healthcare costs.
引用
收藏
页数:16
相关论文
共 103 条
[1]  
Abbafati C, 2020, LANCET, V396, P1204
[2]   The clinical and economic burden of NAFLD: time to turn the tide [J].
Abdelmalek, Manal F. .
NATURE REVIEWS GASTROENTEROLOGY & HEPATOLOGY, 2016, 13 (12) :685-+
[3]  
Agresti A., 2013, Categorical Data Analysis, V3rd ed
[4]   Harmonizing the Metabolic Syndrome A Joint Interim Statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity [J].
Alberti, K. G. M. M. ;
Eckel, Robert H. ;
Grundy, Scott M. ;
Zimmet, Paul Z. ;
Cleeman, James I. ;
Donato, Karen A. ;
Fruchart, Jean-Charles ;
James, W. Philip T. ;
Loria, Catherine M. ;
Smith, Sidney C., Jr. .
CIRCULATION, 2009, 120 (16) :1640-1645
[5]   Risks and clinical predictors of cirrhosis and hepatocellular carcinoma diagnoses in adults with diagnosed NAFLD: real-world study of 18 million patients in four European cohorts [J].
Alexander, Myriam ;
Loomis, A. Katrina ;
van der Lei, Johan ;
Duarte-Salles, Talita ;
Prieto-Alhambra, Daniel ;
Ansell, David ;
Pasqua, Alessandro ;
Lapi, Francesco ;
Rijnbeek, Peter ;
Mosseveld, Mees ;
Waterworth, Dawn M. ;
Kendrick, Stuart ;
Sattar, Naveed ;
Alazawi, William .
BMC MEDICINE, 2019, 17 (1)
[6]   Glycemic Control Predicts Severity of Hepatocyte Ballooning and Hepatic Fibrosis in Nonalcoholic Fatty Liver Disease [J].
Alexopoulos, Anastasia-Stefania ;
Crowley, Matthew J. ;
Wang, Ying ;
Moylan, Cynthia A. ;
Guy, Cynthia D. ;
Henao, Ricardo ;
Piercy, Dawn L. ;
Seymour, Keri A. ;
Sudan, Ranjan ;
Portenier, Dana D. ;
Diehl, Anna Mae ;
Coviello, Andrea D. ;
Abdelmalek, Manal F. .
HEPATOLOGY, 2021, 74 (03) :1220-1233
[7]   Liver Fibrosis, but No Other Histologic Features, Is Associated With Long-term Outcomes of Patients With Nonalcoholic Fatty Liver Disease [J].
Angulo, Paul ;
Kleiner, David E. ;
Dam-Larsen, Sanne ;
Adams, Leon A. ;
Bjornsson, Einar S. ;
Charatcharoenwitthaya, Phunchai ;
Mills, Peter R. ;
Keach, Jill C. ;
Lafferty, Heather D. ;
Stahler, Alisha ;
Haflidadottir, Svanhildur ;
Bendtsen, Flemming .
GASTROENTEROLOGY, 2015, 149 (02) :389-+
[8]   Noninvasive Tests Accurately Identify Advanced Fibrosis due to NASH: Baseline Data From the STELLAR Trials [J].
Anstee, Quentin M. ;
Lawitz, Eric J. ;
Alkhouri, Naim ;
Wong, Vincent Wai-Sun ;
Romero-Gomez, Manuel ;
Okanoue, Takeshi ;
Trauner, Michael ;
Kersey, Kathryn ;
Li, Georgia ;
Han, Ling ;
Jia, Catherine ;
Wang, Lulu ;
Chen, Guang ;
Subramanian, G. Mani ;
Myers, Robert P. ;
Djedjos, C. Stephen ;
Kohli, Anita ;
Bzowej, Natalie ;
Younes, Ziad ;
Sarin, Shiv ;
Shiffman, Mitchell L. ;
Harrison, Stephen A. ;
Afdhal, Nezam H. ;
Goodman, Zachary ;
Younossi, Zobair M. .
HEPATOLOGY, 2019, 70 (05) :1521-1530
[9]   Physical activity across the lifespan and liver cancer incidence in the NIH-AARP Diet and Health Study cohort [J].
Arem, Hannah ;
Loftfield, Erikka ;
Saint-Maurice, Pedro F. ;
Freedman, Neal D. ;
Matthews, Charles E. .
CANCER MEDICINE, 2018, 7 (04) :1450-1457
[10]   Mapping liver fat female-dependent quantitative trait loci in collaborative cross mice [J].
Atamni, Hanifa J. Abu-Toamih ;
Botzman, Maya ;
Mott, Richard ;
Gat-Viks, Irit ;
Iraqi, Fuad A. .
MAMMALIAN GENOME, 2016, 27 (11-12) :565-573