Dependence of Dayside Electron Densities at Venus on Solar Irradiance

被引:5
作者
Hensley, K. [1 ]
Withers, P. [1 ,2 ]
Girazian, Z. [3 ]
Paetzold, M. [4 ]
Tellmann, S. [4 ]
Haeusler, B. [5 ]
机构
[1] Boston Univ, Dept Astron, 725 Commonwealth Ave, Boston, MA 02215 USA
[2] Boston Univ, Ctr Space Phys, Boston, MA 02215 USA
[3] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA
[4] Univ Cologne, Rhein Inst Umweltforsch, Abt Planetenforsch, Cologne, Germany
[5] Univ Bundeswehr Munchen, Inst Raumfahrttechn & Weltraumnutzung, Neubiberg, Germany
关键词
MODEL-CALCULATIONS; IONOSPHERIC PEAK; EMPIRICAL-MODEL; ZENITH ANGLE; CYCLE; TEMPERATURE; ATMOSPHERE; MARS; THERMOSPHERE; CHEMISTRY;
D O I
10.1029/2019JA027167
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The ionosphere of Venus is a weakly ionized plasma layer embedded in the planet's upper atmosphere. Planetary ionospheres provide an excellent opportunity to study how our variable Sun affects the planets in our solar system. Because ionospheres are reservoirs from which atmospheric species can be lost to space, studying how ionospheres respond to changes in solar activity can help us understand how planetary atmospheres have evolved since their formation. While variations of the main and lower ionospheric peaks of Venus have been well studied, the behavior of the ionosphere above the altitude of the greatest electron density has not been fully constrained. To investigate the behavior of this region, we use electron density profiles obtained by the Venus Radio Science experiment aboard Venus Express. An increase in the response of the electron density to increasing solar irradiance with increasing altitude above the peak is readily apparent in these data. By using a one-dimensional photochemical equilibrium model to investigate the factors that drive the variations of the ionosphere of Venus, we find that changes in the composition of the underlying neutral atmosphere are responsible for the observed increase in ionospheric response with altitude.
引用
收藏
页数:17
相关论文
共 43 条
[1]  
Ambili KM, 2019, ICARUS, V321, P661, DOI [10.1016/j.icarus.2018.12.001, 10.23919/ursiap-rasc.2019.8738747]
[2]  
[Anonymous], 1967, SCIENCE, V158, P1678, DOI 10.1126/science.158.3809.1678
[3]  
[Anonymous], 1987, ADV SPACE RES, DOI DOI 10.1016/0273-1177(87)90202-X
[4]   VENUS IONOSPHERE AND SOLAR-WIND INTERACTION [J].
BAUER, SJ ;
BRACE, LH ;
HUNTEN, DM ;
INTRILIGATOR, DS ;
KNUDSEN, WC ;
NAGY, AF ;
RUSSELL, CT ;
SCARF, FL ;
WOLFE, JH .
SPACE SCIENCE REVIEWS, 1977, 20 (04) :413-430
[5]  
Brace L.H., 1984, Advances in Space Research, V4, P89
[6]  
BRACE LH, 1991, SPACE SCI REV, V55, P81, DOI 10.1007/BF00177136
[7]   ELECTRON TEMPERATURES AND DENSITIES IN THE VENUS IONOSPHERE - PIONEER VENUS ORBITER ELECTRON-TEMPERATURE PROBE RESULTS [J].
BRACE, LH ;
THEIS, RF ;
KREHBIEL, JP ;
NAGY, AF ;
DONAHUE, TM ;
MCELROY, MB ;
PEDERSEN, A .
SCIENCE, 1979, 203 (4382) :763-765
[8]  
BRACE LH, 1995, ADV SPACE RES, V17, P181
[9]   Model calculations of the dayside ionosphere of Venus: Energetics [J].
Cravens, T. E. ;
Gombosi, T. I. ;
Kozyra, J. ;
Nagy, A. F. ;
Brace, L. H. ;
Knudsen, W. C. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1980, 85 (A13) :7778-7786
[10]   THE IONOSPHERIC PEAK ON THE VENUS DAYSIDE [J].
CRAVENS, TE ;
KLIORE, AJ ;
KOZYRA, JU ;
NAGY, AF .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1981, 86 (NA13) :1323-1329