Nonparametric weighted symmetry tests

被引:6
作者
Abdous, B [1 ]
Ghoudi, K
Rémillard, B
机构
[1] Univ Laval, Dept Social & Prevent Med, Ste Foy, PQ G1K 7P4, Canada
[2] United Arab Emirates Univ, Dept Stat, Al Ain, U Arab Emirates
[3] HEC Montreal, Serv Enseignement Methodes Quantitat Gest, Grp Etud & Rech Anal Decis, Montreal, PQ H3T 2A7, Canada
来源
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE | 2003年 / 31卷 / 04期
关键词
Brownian bridge; Brownian motion; kernel density estimator; returns; weighted symmetry; Wilcoxon signed rank test;
D O I
10.2307/3315851
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Weighted symmetry is an extension of the classical notion of symmetry in which the tails of a distribution are similar, up to a scaling factor. The authors develop test statistics of weighted symmetry based on empirical processes. The finite-dimensional distributions of the proposed statistics are either nonparametric or conditionally nonparametric, according as the parameters of weighted symmetry are known or estimated. Asymptotically, the distributions of the processes behave like Brownian bridges or motions, leading to familiar distributions for the proposed test statistics. The authors also establish the asymptotic normality of Hodges-Lehmann type estimators based on a generalization of the Wilcoxon signed rank test. Furthermore, they propose density estimators in that setting.
引用
收藏
页码:357 / 381
页数:25
相关论文
共 20 条
[1]   RELATING QUANTILES AND EXPECTILES UNDER WEIGHTED-SYMMETRY [J].
ABDOUS, B ;
REMILLARD, B .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1995, 47 (02) :371-384
[2]  
Aigner D., 1976, International Economic Review, V17, P377, DOI [DOI 10.2307/2525708, https://doi.org/10.2307/2525708]
[3]  
ARDEN R, 1997, 9715 U CAMBR DEP APP
[4]   THE CRASH OF 87 - WAS IT EXPECTED - THE EVIDENCE FROM OPTIONS MARKETS [J].
BATES, DS .
JOURNAL OF FINANCE, 1991, 46 (03) :1009-1044
[5]  
BILLINGSLEY P., 1999, Convergence of Probability Measures, V2nd, DOI 10.1002/9780470316962
[6]  
BROWN S, 2000, EC FINANCIAL REV, P23
[7]  
EUBANK R, 1992, NONPARAMETRIC STAT, V1, P301
[8]   Empirical processes based on pseudo-observations [J].
Ghoudi, K ;
Remillard, B .
ASYMPTOTIC METHODS IN PROBABILITY AND STATISTICS: A VOLUME IN HONOUR OF MIKLOS CSORGO, 1998, :171-197
[9]  
GHOUDI K, 2003, ASYMPTOTIC METHODS S
[10]  
Gibbons J.F., 1975, PROJECTED RANGE STAT, V2nd