Low-temperature synthesis of CuO-interlaced nanodiscs for lithium ion battery electrodes

被引:52
作者
Seo, Seung-Deok [1 ]
Jin, Yun-Ho [1 ]
Lee, Seung-Hun [1 ]
Shim, Hyun-Woo [1 ]
Kim, Dong-Wan [1 ]
机构
[1] Ajou Univ, Dept Mat Sci & Engn, Suwon 443749, South Korea
来源
NANOSCALE RESEARCH LETTERS | 2011年 / 6卷
关键词
GROWTH; NANORIBBONS; NANOSHEETS; CU(OH)(2); NANORODS;
D O I
10.1186/1556-276X-6-397
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this study, we report the high-yield synthesis of 2-dimensional cupric oxide (CuO) nanodiscs through dehydrogenation of 1-dimensional Cu(OH)(2) nanowires at 60 degrees C. Most of the nanodiscs had a diameter of approximately 500 nm and a thickness of approximately 50 nm. After further prolonged reaction times, secondary irregular nanodiscs gradually grew vertically into regular nanodiscs. These CuO nanostructures were characterized using X-ray diffraction, transmission electron microscopy, and Brunauer-Emmett-Teller measurements. The possible growth mechanism of the interlaced disc CuO nanostructures is systematically discussed. The electrochemical performances of the CuO nanodisc electrodes were evaluated in detail using cyclic voltammetry and galvanostatic cycling. Furthermore, we demonstrate that the incorporation of multiwalled carbon nanotubes enables the enhanced reversible capacities and capacity retention of CuO nanodisc electrodes on cycling by offering more efficient electron transport paths.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 27 条
[1]   Room temperature growth of CuO nanorod arrays on copper and their application as a cathode in dye-sensitized solar cells [J].
Anandan, S ;
Wen, XG ;
Yang, SH .
MATERIALS CHEMISTRY AND PHYSICS, 2005, 93 (01) :35-40
[2]   Controlled synthesis and. self-assembly of single-crystalline CuO nanorods and nanoribbons [J].
Chang, Y ;
Zeng, HC .
CRYSTAL GROWTH & DESIGN, 2004, 4 (02) :397-402
[3]   Electrochemical performance of polycrystalline CuO nanowires as anode material for Li ion batteries [J].
Chen, L. B. ;
Lu, N. ;
Xu, C. M. ;
Yu, H. C. ;
Wang, T. H. .
ELECTROCHIMICA ACTA, 2009, 54 (17) :4198-4201
[4]   The transformation of Cu(OH)2 into CuO, revisited [J].
Cudennec, Y ;
Lecerf, A .
SOLID STATE SCIENCES, 2003, 5 (11-12) :1471-1474
[5]  
Débart A, 2001, J ELECTROCHEM SOC, V148, pA1266, DOI 10.1149/1.1409971
[6]   Preparation and electrochemical performance of polycrystalline and single crystalline CuO nanorods as anode materials for Li ion battery [J].
Gao, XP ;
Bao, JL ;
Pan, GL ;
Zhu, HY ;
Huang, PX ;
Wu, F ;
Song, DY .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (18) :5547-5551
[7]   Kirkendall-effect-based growth of dendrite-shaped CuO hollow micro/nanostructures for lithium-ion battery anodes [J].
Hu, Yingying ;
Huang, Xintang ;
Wang, Kai ;
Liu, Jinping ;
Jiang, Jian ;
Ding, Ruimin ;
Ji, Xiaoxu ;
Li, Xin .
JOURNAL OF SOLID STATE CHEMISTRY, 2010, 183 (03) :662-667
[8]   One-step fabrication of CuO nanoribbons array electrode and its excellent lithium storage performance [J].
Ke, Fu-Sheng ;
Huang, Ling ;
Wei, Guo-Zhen ;
Xue, Lian-Jie ;
Li, Jun-Tao ;
Zhang, Bo ;
Chen, Shu-Ru ;
Fan, Xiao-Yong ;
Sun, Shi-Gang .
ELECTROCHIMICA ACTA, 2009, 54 (24) :5825-5829
[9]   High rate capabilities induced by multi-phasic nanodomains in iron-substituted calcium cobaltite electrodes [J].
Ko, Young-Dae ;
Kang, Jin-Gu ;
Choi, Kyung Jin ;
Park, Jae-Gwan ;
Ahn, Jae-Pyoung ;
Chung, Kyung Yoon ;
Nam, Kyung-Wan ;
Yoon, Won-Sub ;
Kim, Dong-Wan .
JOURNAL OF MATERIALS CHEMISTRY, 2009, 19 (13) :1829-1835
[10]   Preparation of brookite-type TiO2/Carbon nanocomposite electrodes for application to Li ion batteries [J].
Lee, Du-Hee ;
Park, Jae-Gwan ;
Choi, Kyoung Jin ;
Choi, Heon-Jin ;
Kim, Dong-Wan .
EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2008, (06) :878-882