Singular elliptic problems with unbalanced growth and critical exponent

被引:23
作者
Kumar, Deepak [1 ]
Radulescu, Vicentiu D. [2 ,3 ,4 ]
Sreenadh, K. [1 ]
机构
[1] Indian Inst Technol Delhi, Dept Math, Hauz Khaz, New Delhi 110016, India
[2] AGH Univ Sci & Technol, Fac Appl Math, Al Mickiewicza 30, PL-30059 Krakow, Poland
[3] Univ Craiova, Dept Math, Craiova 200585, Romania
[4] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R China
关键词
(p; q)-Laplace equation; double-phase energy; Sobolev critical exponent; singular problem; DOUBLE-PHASE; POSITIVE SOLUTIONS; DIRICHLET PROBLEM; REGULARITY; EXISTENCE; EQUATIONS; CONCAVE; (P; NONLINEARITIES; Q)-LAPLACIAN;
D O I
10.1088/1361-6544/ab81ed
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study the existence and multiplicity of solutions of the following (p, q)-Laplace equation with singular nonlinearity: {-Delta(p)u-beta Delta(q)u = lambda u(-delta) + u(r-1), u > 0, in Omega u =0 on partial derivative Omega, where Omega is a bounded domain in R-n with boundary, 1 < q < p < r <= p*, where p* = np/n-p, 0 < delta < 1, n > p and lambda, beta > 0 are parameters. We prove existence, multiplicity and regularity of weak solutions of (P-lambda) for suitable range of lambda. We also prove the global existence result for problem (P-lambda).
引用
收藏
页码:3336 / 3369
页数:34
相关论文
共 45 条
[1]   THE LANE-EMDEN EQUATION WITH VARIABLE DOUBLE-PHASE AND MULTIPLE REGIME [J].
Alves, Claudianor O. ;
Radulescu, Vicentiu D. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (07) :2937-2952
[2]  
[Anonymous], 1979, Lecture Notes in Biomathematics
[3]  
[Anonymous], 2012, Minimax Theorems
[4]   SOME RESULTS ABOUT THE EXISTENCE OF A 2ND POSITIVE SOLUTION IN A QUASI-LINEAR CRITICAL PROBLEM [J].
AZORERO, JG ;
ALONSO, IP .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1994, 43 (03) :941-957
[5]   Double phase transonic flow problems with variable growth: nonlinear patterns and stationary waves [J].
Bahrouni, Anouar ;
Radulescu, Vicentiu D. ;
Repovs, Dusan D. .
NONLINEARITY, 2019, 32 (07) :2481-2495
[6]   DISCONTINUOUS EQUILIBRIUM SOLUTIONS AND CAVITATION IN NON-LINEAR ELASTICITY [J].
BALL, JM .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1982, 306 (1496) :557-611
[7]  
BALL JM, 1977, ARCH RATION MECH AN, V63, P337, DOI 10.1007/BF00279992
[8]   NON-AUTONOMOUS FUNCTIONALS, BORDERLINE CASES AND RELATED FUNCTION CLASSES [J].
Baroni, P. ;
Colombo, M. ;
Mingione, G. .
ST PETERSBURG MATHEMATICAL JOURNAL, 2016, 27 (03) :347-379
[9]   Regularity for general functionals with double phase [J].
Baroni, Paolo ;
Colombo, Maria ;
Mingione, Giuseppe .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (02)
[10]   Harnack inequalities for double phase functionals [J].
Baroni, Paolo ;
Colombo, Maria ;
Mingione, Giuseppe .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 121 :206-222