Nonexistence of solutions for singular quasilinear differential inequalities with a gradient nonlinearity

被引:18
作者
Li, Xiaohong [2 ]
Li, Fengquan [1 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
[2] Shandong Inst Business & Technol, Sch Math & Informat Sci, Yantai 264005, Shandong, Peoples R China
关键词
Quasilinear differential inequality; Test function method; Gradient term; Singularities; Strongly-p-coercive; Weakly-p-coercive; POSITIVE SOLUTIONS; ELLIPTIC INEQUALITIES; NONNEGATIVE SOLUTIONS; WEAK SOLUTIONS; LIOUVILLE; EQUATIONS; THEOREMS;
D O I
10.1016/j.na.2011.11.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to prove some new nonexistence theorems for the singular quasilinear differential inequalities with a gradient nonlinearity in bounded and unbounded domains. The proofs are based on the test function method developed by Mitidieri and Pohozaev. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2812 / 2822
页数:11
相关论文
共 31 条
[1]  
[Anonymous], 1999, DOKL MATH
[2]  
[Anonymous], 2001, T MAT I STEKLOVA
[3]   Nonexistence results and estimates for some nonlinear elliptic problems [J].
Bidaut-Véron, MF ;
Pohozaev, S .
JOURNAL D ANALYSE MATHEMATIQUE, 2001, 84 (1) :1-49
[4]  
Brezis H, 1998, B UNIONE MAT ITAL, V1B, P223
[6]  
Caristi G., 1997, Adv Differ Equ, V2, P319
[7]   Nonnegative solutions of some quasilinear elliptic inequalities and applications [J].
D'Ambrosio, L. ;
Mitidieri, E. .
SBORNIK MATHEMATICS, 2010, 201 (06) :855-871
[8]   A priori estimates, positivity results, and nonexistence theorems for quasilinear degenerate elliptic inequalities [J].
D'Ambrosio, Lorenzo ;
Mitidieri, Enzo .
ADVANCES IN MATHEMATICS, 2010, 224 (03) :967-1020
[9]   Liouville theorems for anisotropic quasilinear inequalities [J].
D'Ambrosio, Lorenzo .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (08) :2855-2869
[10]  
Farina A, 2011, J DIFFER EQUATIONS, V250, P4409, DOI 10.1016/j.jde.2011.02.016