A Comprehensive Survey of the Harmony Search Algorithm in Clustering Applications

被引:109
作者
Abualigah, Laith [1 ]
Diabat, Ali [2 ,3 ]
Geem, Zong Woo [4 ]
机构
[1] Amman Arab Univ, Fac Comp Sci & Informat, Amman 11953, Jordan
[2] New York Univ Abu Dhabi, Div Engn, Abu Dhabi 129188, U Arab Emirates
[3] NYU, Tandon Sch Engn, Dept Civil & Urban Engn, Brooklyn, NY 11201 USA
[4] Gachon Univ, Dept Energy IT, Seongnam 13120, South Korea
来源
APPLIED SCIENCES-BASEL | 2020年 / 10卷 / 11期
基金
新加坡国家研究基金会;
关键词
harmony search algorithm; meta-heuristic optimization algorithms; optimization problems; clustering applications; PARTICLE SWARM OPTIMIZATION; TEXT FEATURE-SELECTION; KRILL HERD ALGORITHM; HYBRID; STRATEGY; PROTOCOL; DESIGN;
D O I
10.3390/app10113827
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The Harmony Search Algorithm (HSA) is a swarm intelligence optimization algorithm which has been successfully applied to a broad range of clustering applications, including data clustering, text clustering, fuzzy clustering, image processing, and wireless sensor networks. We provide a comprehensive survey of the literature on HSA and its variants, analyze its strengths and weaknesses, and suggest future research directions.
引用
收藏
页数:26
相关论文
共 110 条
  • [1] Optimal clustering of MGs based on droop controller for improving reliability using a hybrid of harmony search and genetic algorithms
    Abedini, Mohammad
    Moradi, Mohammad H.
    Hosseinian, S. M.
    [J]. ISA TRANSACTIONS, 2016, 61 : 119 - 128
  • [2] Abualigah L.M., 2020, RECENT ADV HYBRID ME
  • [3] Ant Lion Optimizer: A Comprehensive Survey of Its Variants and Applications
    Abualigah, Laith
    Shehab, Mohammad
    Alshinwan, Mohammad
    Mirjalili, Seyedali
    Abd Elaziz, Mohamed
    [J]. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2021, 28 (03) : 1397 - 1416
  • [4] Multi-verse optimizer algorithm: a comprehensive survey of its results, variants, and applications
    Abualigah, Laith
    [J]. NEURAL COMPUTING & APPLICATIONS, 2020, 32 (16) : 12381 - 12401
  • [5] Salp swarm algorithm: a comprehensive survey
    Abualigah, Laith
    Shehab, Mohammad
    Alshinwan, Mohammad
    Alabool, Hamzeh
    [J]. NEURAL COMPUTING & APPLICATIONS, 2020, 32 (15) : 11195 - 11215
  • [6] Hybrid clustering analysis using improved krill herd algorithm
    Abualigah, Laith Mohammad
    Khader, Ahamad Tajudin
    Hanandeh, Essam Said
    [J]. APPLIED INTELLIGENCE, 2018, 48 (11) : 4047 - 4071
  • [7] A hybrid strategy for krill herd algorithm with harmony search algorithm to improve the data clustering
    Abualigah, Laith Mohammad
    Khader, Ahamad Tajudin
    Hanandeh, Essam Said
    [J]. INTELLIGENT DECISION TECHNOLOGIES-NETHERLANDS, 2018, 12 (01): : 3 - 14
  • [8] A novel hybridization strategy for krill herd algorithm applied to clustering techniques
    Abualigah, Laith Mohammad
    Khader, Ahamad Tajudin
    Hanandeh, Essam Said
    Gandomi, Amir H.
    [J]. APPLIED SOFT COMPUTING, 2017, 60 : 423 - 435
  • [9] Unsupervised text feature selection technique based on hybrid particle swarm optimization algorithm with genetic operators for the text clustering
    Abualigah, Laith Mohammad
    Khader, Ahamad Tajudin
    [J]. JOURNAL OF SUPERCOMPUTING, 2017, 73 (11) : 4773 - 4795
  • [10] Text feature selection with a robust weight scheme and dynamic dimension reduction to text document clustering
    Abualigah, Laith Mohammad
    Khader, Ahamad Tajudin
    Al-Betar, Mohammed Azmi
    Alomari, Osama Ahmad
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2017, 84 : 24 - 36