A Comprehensive Survey of the Harmony Search Algorithm in Clustering Applications

被引:114
作者
Abualigah, Laith [1 ]
Diabat, Ali [2 ,3 ]
Geem, Zong Woo [4 ]
机构
[1] Amman Arab Univ, Fac Comp Sci & Informat, Amman 11953, Jordan
[2] New York Univ Abu Dhabi, Div Engn, Abu Dhabi 129188, U Arab Emirates
[3] NYU, Tandon Sch Engn, Dept Civil & Urban Engn, Brooklyn, NY 11201 USA
[4] Gachon Univ, Dept Energy IT, Seongnam 13120, South Korea
来源
APPLIED SCIENCES-BASEL | 2020年 / 10卷 / 11期
基金
新加坡国家研究基金会;
关键词
harmony search algorithm; meta-heuristic optimization algorithms; optimization problems; clustering applications; PARTICLE SWARM OPTIMIZATION; TEXT FEATURE-SELECTION; KRILL HERD ALGORITHM; HYBRID; STRATEGY; PROTOCOL; DESIGN;
D O I
10.3390/app10113827
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The Harmony Search Algorithm (HSA) is a swarm intelligence optimization algorithm which has been successfully applied to a broad range of clustering applications, including data clustering, text clustering, fuzzy clustering, image processing, and wireless sensor networks. We provide a comprehensive survey of the literature on HSA and its variants, analyze its strengths and weaknesses, and suggest future research directions.
引用
收藏
页数:26
相关论文
共 110 条
[1]  
Abdel-Raouf O., 2013, INT J COMPUT APPL, V70, P17, DOI 10.5120/12255-8261
[2]   Optimal clustering of MGs based on droop controller for improving reliability using a hybrid of harmony search and genetic algorithms [J].
Abedini, Mohammad ;
Moradi, Mohammad H. ;
Hosseinian, S. M. .
ISA TRANSACTIONS, 2016, 61 :119-128
[3]  
Abualigah L.M., 2020, RECENT ADV HYBRID ME
[4]   Ant Lion Optimizer: A Comprehensive Survey of Its Variants and Applications [J].
Abualigah, Laith ;
Shehab, Mohammad ;
Alshinwan, Mohammad ;
Mirjalili, Seyedali ;
Abd Elaziz, Mohamed .
ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2021, 28 (03) :1397-1416
[5]   Multi-verse optimizer algorithm: a comprehensive survey of its results, variants, and applications [J].
Abualigah, Laith .
NEURAL COMPUTING & APPLICATIONS, 2020, 32 (16) :12381-12401
[6]   Salp swarm algorithm: a comprehensive survey [J].
Abualigah, Laith ;
Shehab, Mohammad ;
Alshinwan, Mohammad ;
Alabool, Hamzeh .
NEURAL COMPUTING & APPLICATIONS, 2020, 32 (15) :11195-11215
[7]   Hybrid clustering analysis using improved krill herd algorithm [J].
Abualigah, Laith Mohammad ;
Khader, Ahamad Tajudin ;
Hanandeh, Essam Said .
APPLIED INTELLIGENCE, 2018, 48 (11) :4047-4071
[8]   A hybrid strategy for krill herd algorithm with harmony search algorithm to improve the data clustering [J].
Abualigah, Laith Mohammad ;
Khader, Ahamad Tajudin ;
Hanandeh, Essam Said .
INTELLIGENT DECISION TECHNOLOGIES-NETHERLANDS, 2018, 12 (01) :3-14
[9]   A novel hybridization strategy for krill herd algorithm applied to clustering techniques [J].
Abualigah, Laith Mohammad ;
Khader, Ahamad Tajudin ;
Hanandeh, Essam Said ;
Gandomi, Amir H. .
APPLIED SOFT COMPUTING, 2017, 60 :423-435
[10]   Unsupervised text feature selection technique based on hybrid particle swarm optimization algorithm with genetic operators for the text clustering [J].
Abualigah, Laith Mohammad ;
Khader, Ahamad Tajudin .
JOURNAL OF SUPERCOMPUTING, 2017, 73 (11) :4773-4795