Quantum Differentiability on Noncommutative Euclidean Spaces

被引:17
作者
McDonald, Edward [1 ]
Sukochev, Fedor [1 ]
Xiong, Xiao [1 ,2 ]
机构
[1] UNSW, Sch Math & Stat, Kensington, NSW 2052, Australia
[2] Harbin Inst Technol, Inst Adv Study Math, Harbin 150001, Peoples R China
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
UNBOUNDED FREDHOLM MODULES; L-P; OPERATOR; ALGEBRAS; GEOMETRY; INTEGRATION; INEQUALITY; CURVATURE; FORMULA; LIEB;
D O I
10.1007/s00220-019-03605-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the topic of quantum differentiability on quantum Euclidean d-dimensional spaces (otherwise known as Moyal d-spaces), and we find conditions that are necessary and sufficient for the singular values of the quantised differential (d) over barx to have decay O(n(-alpha)) for 0 < alpha <= 1/d. This result is substantially more difficult than the analogous problems for Euclidean space and for quantum d-tori.
引用
收藏
页码:491 / 542
页数:52
相关论文
共 72 条
[1]  
[Anonymous], 1998, ASTERISQUE
[2]  
[Anonymous], OPERATOR ALGEBRAS QU
[3]   ON AN INEQUALITY OF LIEB AND THIRRING [J].
ARAKI, H .
LETTERS IN MATHEMATICAL PHYSICS, 1990, 19 (02) :167-170
[4]  
Atiyah M.F., 1969, P INT C FUNCT AN REL, P21
[5]  
BIRMAN MS, 1989, ZAP NAUCHN SEM LOMI, V170, P34
[6]   Unbounded Fredholm modules and spectral flow [J].
Carey, A ;
Phillips, J .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1998, 50 (04) :673-718
[7]   Index Theory for Locally Compact Noncommutative Geometries [J].
Carey, A. L. ;
Gayral, V. ;
Rennie, A. ;
Sukochev, F. A. .
MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 231 (1085) :1-+
[8]   NONCOMMUTATIVE GEOMETRY AND REALITY [J].
CONNES, A .
JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (11) :6194-6231
[9]   THE LOCAL INDEX FORMULA IN NONCOMMUTATIVE GEOMETRY [J].
CONNES, A ;
MOSCOVICI, H .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1995, 5 (02) :174-243
[10]   THE ACTION FUNCTIONAL IN NON-COMMUTATIVE GEOMETRY [J].
CONNES, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 117 (04) :673-683