Syntomic cohomology and p-adic motivic cohomology

被引:1
作者
Ertl, Veronika [1 ]
Niziol, Wieslawa [2 ]
机构
[1] Univ Regensburg, Fak Math, Univ Str 31, D-93053 Regensburg, Germany
[2] Ecole Normale Super Lyon, CNRS, UMPA, 46 Allee Italie, F-69007 Lyon, France
来源
ALGEBRAIC GEOMETRY | 2019年 / 6卷 / 01期
关键词
motivic cohomology; syntomic cohomology; p-adic nearby cycles; SEMI-STABLE REDUCTION; BLOCH-KATO CONJECTURE; CRYSTALLINE COHOMOLOGY; ETALE; REGULATORS; TORSION; CYCLES;
D O I
10.14231/AG-2019-006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a mixed characteristic analog of the Beilinson-Lichtenbaum conjecture for p-adic motivic cohomology. It gives a description, in the stable range, of p-adic motivic cohomology (defined using algebraic cycles) in terms of differential forms. This generalizes a result of Geisser from small Tate twists to all twists. We use as a critical new ingredient the comparison theorem between syntomic complexes and p-adic nearby cycles proved recently by Colmez and Niziol.
引用
收藏
页码:100 / 131
页数:32
相关论文
共 36 条
[31]  
Shiho A., 2002, J. Math. Sci. Univ. Tokyo, V9, P1
[32]  
Suslin A, 2000, NATO ADV SCI I C-MAT, V548, P117
[33]   On p-adic nearby cycles of log smooth families [J].
Tsuji, T .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2000, 128 (04) :529-575
[34]   p-adic etale cohomology and crystalline cohomology in the semi-stable reduction case [J].
Tsuji, T .
INVENTIONES MATHEMATICAE, 1999, 137 (02) :233-411
[35]  
Tsuji Takeshi, 1998, P ICM, VII, P207
[36]   The norm residue isomorphism theorem [J].
Weibel, C. .
JOURNAL OF TOPOLOGY, 2009, 2 (02) :346-372