Syntomic cohomology and p-adic motivic cohomology

被引:1
作者
Ertl, Veronika [1 ]
Niziol, Wieslawa [2 ]
机构
[1] Univ Regensburg, Fak Math, Univ Str 31, D-93053 Regensburg, Germany
[2] Ecole Normale Super Lyon, CNRS, UMPA, 46 Allee Italie, F-69007 Lyon, France
来源
ALGEBRAIC GEOMETRY | 2019年 / 6卷 / 01期
关键词
motivic cohomology; syntomic cohomology; p-adic nearby cycles; SEMI-STABLE REDUCTION; BLOCH-KATO CONJECTURE; CRYSTALLINE COHOMOLOGY; ETALE; REGULATORS; TORSION; CYCLES;
D O I
10.14231/AG-2019-006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a mixed characteristic analog of the Beilinson-Lichtenbaum conjecture for p-adic motivic cohomology. It gives a description, in the stable range, of p-adic motivic cohomology (defined using algebraic cycles) in terms of differential forms. This generalizes a result of Geisser from small Tate twists to all twists. We use as a critical new ingredient the comparison theorem between syntomic complexes and p-adic nearby cycles proved recently by Colmez and Niziol.
引用
收藏
页码:100 / 131
页数:32
相关论文
共 36 条
[1]  
Beilinson A, 2013, CAMB J MATH, V1, P1
[2]   F-ISOCRYSTALS AND DE RHAM CO-HOMOLOGY .1. [J].
BERTHELOT, P ;
OGUS, A .
INVENTIONES MATHEMATICAE, 1983, 72 (02) :159-199
[3]   Syntomic regulators and p-adic integration I:: Rigid syntomic regulators [J].
Besser, A .
ISRAEL JOURNAL OF MATHEMATICS, 2000, 120 (2) :291-334
[4]   ALGEBRAIC CYCLES AND HIGHER K-THEORY [J].
BLOCH, S .
ADVANCES IN MATHEMATICS, 1986, 61 (03) :267-304
[5]  
BLOCH S, 1986, PUBL MATH-PARIS, P107
[6]  
Breuil C, 2002, ASTERISQUE, P81
[7]   TORSION IN THE CHOW GROUP OF CODIMENSION-2 [J].
COLLIOTTHELENE, JL ;
SANSUC, JJ ;
SOULE, C .
DUKE MATHEMATICAL JOURNAL, 1983, 50 (03) :763-801
[8]   Syntomic complexes and p-adic nearby cycles [J].
Colmez, Pierre ;
Niziol, Wieslawa .
INVENTIONES MATHEMATICAE, 2017, 208 (01) :1-108
[9]  
Fontaine J.-M., 1987, Current trends in arithmetical algebraic geometry (Arcata, Calif., 1985), Contemp. Math., V67, P179, DOI DOI 10.1090/CONM/067/902593
[10]   Motivic cohomology over Dedekind rings [J].
Geisser, T .
MATHEMATISCHE ZEITSCHRIFT, 2004, 248 (04) :773-794