Differential equations with nonlocal boundary conditions

被引:16
作者
Boucherif, A [1 ]
机构
[1] King Fahd Univ Petr & Minerals, Dept Math Sci, Dhahran 31261, Saudi Arabia
关键词
nonlocal boundary conditions; Green's function; fixed-point; upper and lower solutions;
D O I
10.1016/S0362-546X(01)00365-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we investigate the existence of solutions of the differential equation -u" = f (t, u, u'), 0 < t < 1 with the nonlocal boundary conditions u (0) = c(o) + g(o) (u) and u (1) = c(1) + g(1) (u). Integral nonlocal conditions have been used in connection with thermal conduction problems, semiconductor problems, and problems in hydrodynamics. Several techniques can be used to handle this type of problems, for instance fixed point theory, topological transversality theory, the upper and lower solutions method.
引用
收藏
页码:2419 / 2430
页数:12
相关论文
共 17 条
  • [1] [Anonymous], 1982, FIXED POINT THEORY
  • [2] BITSADZE AV, 1969, DOKL AKAD NAUK SSSR+, V185, P739
  • [3] BOUCHERIF A, 2000, TR253 KFUPM
  • [4] BOUCHERIF A, 1999, MULTIPOINT BOUNDARY
  • [5] Boucherif A., 1998, COMM APPL NONL ANAL, V5, P73
  • [6] CABADA A, IN PRESS APPL MATH C
  • [7] Dovletov D. M., 1989, DIFF EQUAT, V25, P917
  • [8] Solvability of m-point boundary value problems with nonlinear growth
    Feng, W
    Webb, JRL
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 212 (02) : 467 - 480
  • [9] Gupta C. P., 1996, APPL MATH, V41, P1
  • [10] Hartman P, 1964, ORDINARY DIFFERENTIA