Evolution of helium isotopes in the Earth's mantle

被引:147
作者
Class, C [1 ]
Goldstein, SL
机构
[1] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA
[2] Columbia Univ, Dept Earth & Environm Sci, Palisades, NY 10964 USA
基金
美国国家科学基金会;
关键词
D O I
10.1038/nature03930
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Degassing of the Earth's mantle through magmatism results in the irreversible loss of helium to space, and high He-3/He-4 ratios observed in oceanic basalts have been considered the main evidence for a 'primordial' undegassed deep mantle reservoir. Here we present a new global data compilation of ocean island basalts, representing upwelling 'plumes' from the deep mantle, and show that island groups with the highest primordial signal ( high He-3/He-4 ratios) have striking chemical and isotopic similarities to mid-ocean-ridge basalts. We interpret this as indicating a common history of mantle trace element depletion through magmatism. The high He-3/He-4 in plumes may thus reflect incomplete degassing of the deep Earth during continent and ocean crust formation. We infer that differences between plumes and the upper-mantle source of ocean-ridge basalts reflect isolation of plume sources from the convecting mantle for similar to 1-2 Gyr. An undegassed, primordial reservoir in the mantle would therefore not be required, thus reconciling a long-standing contradiction in mantle dynamics.
引用
收藏
页码:1107 / 1112
页数:6
相关论文
共 50 条