Complete integrability beyond Liouville-Arnol'd

被引:9
作者
Bates, L [1 ]
Cushman, R
机构
[1] Univ Calgary, Dept Math & Stat, Calgary, AB T2N 1N4, Canada
[2] Univ Utrecht, Inst Math, NL-3508 TA Utrecht, Netherlands
基金
加拿大自然科学与工程研究理事会;
关键词
integrable system; Hamiltonian monodromy;
D O I
10.1016/S0034-4877(05)80042-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Completely integrable Hamiltonian systems with fibres hot of cylindrical type are shown to arise naturally from holomorphic functions of two variables. They can have Hamiltonian monodromy of finite order.
引用
收藏
页码:77 / 91
页数:15
相关论文
共 15 条
[1]   EXPLICIT IMBEDDING OF (PUNCTURED) DISK INTO C2 [J].
ALEXANDER, H .
COMMENTARII MATHEMATICI HELVETICI, 1977, 52 (04) :539-544
[2]  
[Anonymous], LECT NOTES MATH
[3]  
Arnold V.I., 1985, CLASSIFICATION CRITI, V82
[4]   GRADIENT-LIKE AND INTEGRABLE VECTOR-FIELDS ON IR2 [J].
CHICONE, C ;
EHRLICH, P .
MANUSCRIPTA MATHEMATICA, 1984, 49 (02) :141-164
[5]  
Cushman R.H., 2015, Global Aspects of Classical Integrable Systems, V2nd ed.
[6]  
Do Carmo Manfredo P, 2016, Differential geometry of curves & surfaces, Vsecond
[7]   A REMARK ON INTEGRABLE HAMILTONIAN-SYSTEMS [J].
FLASCHKA, H .
PHYSICS LETTERS A, 1988, 131 (09) :505-508
[8]   HOLOMORPHIC EMBEDDINGS OF PLANAR DOMAINS INTO C-2 [J].
GLOBEVNIK, J ;
STENSONES, B .
MATHEMATISCHE ANNALEN, 1995, 303 (04) :579-597
[9]  
Goetz A., 1970, INTRO DIFFERENTIAL G
[10]  
NARASIMHAN R, 1960, NACHR AKAD WISS GOTT, V2, P159