Tight wavelet frames generated by three symmetric B-spline functions with high vanishing moments

被引:19
作者
Han, B [1 ]
Mo, Q [1 ]
机构
[1] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
关键词
symmetric tight wavelet frames; B-spline functions; vanishing moments;
D O I
10.1090/S0002-9939-03-07205-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note, we show that one can derive from any B-spline function of order m (m is an element of N) an MRA tight wavelet frame in L-2(R) that is generated by the dyadic dilates and integer shifts of three compactly supported real-valued symmetric wavelet functions with vanishing moments of the highest possible order m.
引用
收藏
页码:77 / 86
页数:10
相关论文
共 9 条
[1]   Compactly supported tight and sibling frames with maximum vanishing moments [J].
Chui, CK ;
He, WJ ;
Stöckler, J .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2002, 13 (03) :224-262
[2]   Compactly supported tight frames associated with refinable functions [J].
Chui, CK ;
He, WJ .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2000, 8 (03) :293-319
[3]   Framelets: MRA-based constructions of wavelet frames [J].
Daubechies, I ;
Han, B ;
Ron, A ;
Shen, ZW .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2003, 14 (01) :1-46
[4]  
Daubechies I., 1992, CBMS NSF REGIONAL C, V61, DOI DOI 10.1137/1.9781611970104
[5]   On dual wavelet tight frames [J].
Han, B .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1997, 4 (04) :380-413
[6]  
Han DG, 2000, MEM AM MATH SOC, V147
[7]  
Hernandez E., 1996, 1 COURSE WAVELETS
[8]  
PETUKHOV A, 2001, SYMMETRIC FRAMELETS
[9]   Affine systems in L-2(R-d): The analysis of the analysis operator [J].
Ron, A ;
Shen, ZW .
JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 148 (02) :408-447