Quantification of O2 formation during UV photolysis of water ice: H2O and H2O:CO2 ices

被引:5
|
作者
Bulak, M. [1 ]
Paardekooper, D. M. [1 ]
Fedoseev, G. [1 ,2 ]
Chuang, K-J [1 ]
van Scheltinga, J. Terwisscha [1 ]
Eistrup, C. [3 ]
Linnartz, H. [1 ]
机构
[1] Leiden Univ, Lab Astrophys, Leiden Observ, POB 9513, NL-2300 RA Leiden, Netherlands
[2] Ural Fed Univ, Res Lab Astrochem, Kuibysheva St 48, Ekaterinburg 620026, Russia
[3] Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany
基金
欧盟地平线“2020”;
关键词
astrochemistry; molecular processes; methods: laboratory: solid state; comets: individual: 67P/Churyumov-Gerasimenko; comets: individual: 1P/Halley; ISM: molecules; VACUUM-ULTRAVIOLET PHOTODISSOCIATION; SPITZER SPECTROSCOPIC SURVEY; YOUNG STELLAR OBJECTS; MOLECULAR-OXYGEN; HYDROGEN-PEROXIDE; CROSS-SECTIONS; TEMPERATURE-DEPENDENCE; PRODUCT FORMATION; CO2; ICE; INTERSTELLAR;
D O I
10.1051/0004-6361/202141875
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. The Rosetta and Giotto missions investigated the composition of the cometary comae of 67P/Churyumov-Gerasimenko and 1P/Halley, respectively. In both cases, a surprisingly large amount of molecular oxygen (O-2) was detected and was well correlated with the observed abundances of H2O. Laboratory experiments simulating chemical processing for various astronomical environments already showed that formation of solid state O-2 is linked to water. However, a quantitative study of O-2 formation upon UV photolysis of pure H2O and H2O dominated interstellar ice analogues is still missing. Aims. The goal of this work is to investigate whether the UV irradiation of H2O-rich ice produced at the earliest stages of star formation is efficient enough to explain the observed abundance of cometary O-2. Methods. The photochemistry of pure (H2O)-O-16 ((H2O)-O-18) as well as mixed H2O:CO2 (ratio of 100:11, 100:22, 100:44) and H2O:CO2:O-2 (100:22:2) ices was quantified during UV photolysis. Laser desorption post-ionisation time of flight mass spectrometry (LDPI TOF MS) was used to probe molecular abundances in the ice as a function of UV fluence. Results. Upon UV photolysis of pure amorphous H2O ice, deposited at 20 K, formation of O-2 and H2O2 is observed at abundances of, respectively, (0.9 +/- 0.2)% (O-2/H2O) and (1.3 +/- 0.3)% (H2O2/H2O). To the best of our knowledge, this is the first quantitative characterisation of the kinetics of this process. During the UV photolysis of mixed H2O:CO2 ices, the formation of the relative amount of O-2 compared to H2O increases to a level of (1.6 +/- 0.4)% (for H2O:CO2 ratio of 100:22), while the (H2O2/H2O) yield remains similar to experiments with pure water. In an ice enriched with O-2 (2%), the O-2 level increases up to 7% with regard to H2O, at low UV fluence, which is higher than expected on the basis of the enrichment alone. The resulting O-2/H2O values derived for the H2O and H2O:CO2 ices may account for a (substantial) part of the high oxygen amounts found in the comae of 67P and 1P.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] UV-photolysis of HI•••CO2 complexes in solid parahydrogen:: Formation of CO and H2O
    Fushitani, M
    Shida, T
    Momose, T
    Räsänen, M
    JOURNAL OF PHYSICAL CHEMISTRY A, 2000, 104 (16): : 3635 - 3641
  • [22] Effect of Water on CO2 Adsorption on CaNaY Zeolite: Formation of Ca2+(H2O)(CO2), Ca2+(H2O)(CO2)2 and Ca2+(H2O)2(CO2) Complexes
    Drenchev, Nikola L.
    Shivachev, Boris L.
    Dimitrov, Lubomir D.
    Hadjiivanov, Konstantin I.
    NANOMATERIALS, 2023, 13 (16)
  • [23] Effects of O2, CO2 and H2O on the Adsorption of NO on Cerium Oxide
    Yoshikawa, Kohei
    Aoyagi, Takuya
    Onodera, Taigo
    Takahashi, Eri
    Naito, Takashi
    Miyake, Tatsuya
    Kondo, Junko Nomura
    JOURNAL OF THE JAPAN PETROLEUM INSTITUTE, 2020, 63 (03) : 158 - 162
  • [24] ELECTRON ATTACHMENT AND DETACHMENT .2. MIXTURES OF O2 AND CO2 AND OF O2 AND H2O
    PACK, JL
    PHELPS, AV
    JOURNAL OF CHEMICAL PHYSICS, 1966, 45 (11): : 4316 - &
  • [25] AES STUDY OF THE ADSORPTION OF O2, CO, CO2, AND H2O ON INDIUM
    ROSSNAGEL, SM
    DYLLA, HF
    COHEN, SA
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY, 1979, 16 (02): : 558 - 561
  • [26] CO2, H2O, and CO2/H2O plasma chemistry for polyethylene surface modification
    Médard, N
    Soutif, JC
    Poncin-Epaillard, F
    LANGMUIR, 2002, 18 (06) : 2246 - 2253
  • [27] Nitrogen release during reaction of coal char with O2, CO2, and H2O
    Park, DC
    Day, SJ
    Nelson, PF
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2005, 30 : 2169 - 2175
  • [28] CO•••H2O bonding in and on porous ices
    Givan, A
    Loewenschuss, A
    Nielsen, CJ
    VIBRATIONAL SPECTROSCOPY, 1998, 16 (01) : 85 - 88
  • [29] CO DIFFUSION INTO AMORPHOUS H2O ICES
    Lauck, Trish
    Karssemeijer, Leendertjan
    Shulenberger, Katherine
    Rajappan, Mahesh
    Oeberg, Karin I.
    Cuppen, Herma M.
    ASTROPHYSICAL JOURNAL, 2015, 801 (02):
  • [30] Comparison of the Reburning Chemistry in O2/N2, O2/CO2, and O2/H2O Atmospheres
    He, Yizhuo
    Luo, Jianghui
    Li, Yangguang
    Jia, Huiqiao
    Wang, Feng
    Zou, Chun
    Zheng, Chuguang
    ENERGY & FUELS, 2017, 31 (10) : 11404 - 11412