Weighted gradient inequalities and unique continuation problems

被引:0
作者
De Carli, Laura [1 ]
Gorbachev, Dmitry [2 ]
Tikhonov, Sergey [3 ]
机构
[1] Florida Int Univ, Dept Math, Miami, FL 33199 USA
[2] Tula State Univ, Dept Appl Math & Comp Sci, Tula 300012, Russia
[3] UAB, Ctr Recerca Matemat, ICREA, Campus Bellaterra,Edifici C, Barcelona 08193, Spain
基金
俄罗斯科学基金会;
关键词
ELLIPTIC-SYSTEMS; NORM INEQUALITIES; SOBOLEV INEQUALITIES; POSITIVE EIGENVALUES; PROPERTY; CONSTANT; DIRAC; OPERATORS; THEOREMS; ABSENCE;
D O I
10.1007/s00526-020-1716-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use Pitt inequalities for the Fourier transform to prove the following weighted gradient inequality parallel to e(-tau l(.)) u(1/q) f parallel to(q) <= c(tau)parallel to e(-tau l(.)) v(1/p) del f parallel to(p), f is an element of C-0(infinity) (R-n). This inequality is a Carleman-type estimate that yields unique continuation results for solutions of first order differential equations and systems.
引用
收藏
页数:24
相关论文
共 58 条
[1]  
[Anonymous], ANN SC NORM SUPER PI
[2]  
[Anonymous], 2010, FUNCTIONAL ANAL
[3]   Strong unique continuation for systems of complex vector fields [J].
Barostichi, R. P. ;
Cordaro, P. D. ;
Petronilho, G. .
BULLETIN DES SCIENCES MATHEMATIQUES, 2014, 138 (04) :457-469
[4]  
CAFFARELLI L, 1984, COMPOS MATH, V53, P259
[5]  
Carleman T., 1939, ARK MAT ASTRON FYS, V26, P9
[6]   On rigid and infinitesimal rigid displacements in shell theory [J].
Ciarlet, PG ;
Mardare, C .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2004, 83 (01) :1-15
[7]  
Cnops J, 2012, INTRO DIRAC OPERATOR
[8]   ON THE DEFINITION OF ELLIPTICITY FOR SYSTEMS OF PARTIAL-DIFFERENTIAL EQUATIONS [J].
COSNER, C .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1991, 158 (01) :80-93
[9]   A weighted eigenvalue problem for the p-Laplacian plus a potential [J].
Cuesta, Mabel ;
Quoirin, Humberto Ramos .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2009, 16 (04) :469-491
[10]   Strong unique continuation property for the Dirac equation [J].
De Carli, L ;
Okaji, T .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1999, 35 (06) :825-846