Protein turnover of the Wallenda/DLK kinase regulates a retrograde response to axonal injury

被引:220
作者
Xiong, Xin [1 ]
Wang, Xin [1 ]
Ewanek, Ronny [1 ]
Bhat, Pavan [1 ,2 ]
DiAntonio, Aaron [2 ]
Collins, Catherine A. [1 ]
机构
[1] Univ Michigan, Dept Mol Cellular & Dev Biol, Ann Arbor, MI 48109 USA
[2] Washington Univ, Sch Med, Dept Dev Biol, St Louis, MO 63110 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
MIXED LINEAGE KINASE; DROSOPHILA NEUROMUSCULAR-JUNCTION; VESICULAR GLUTAMATE TRANSPORTER; ZIPPER-BEARING KINASE; N-TERMINAL KINASES; SYNAPTIC GROWTH; JNK PATHWAY; MICROTUBULE DYNAMICS; CYTOPLASMIC DYNEIN; NERVOUS-SYSTEM;
D O I
10.1083/jcb.201006039
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Regenerative responses to axonal injury involve changes in gene expression; however, little is known about how such changes can be induced from a distant site of injury. In this study, we describe a nerve crush assay in Drosophila melanogaster to study injury signaling and regeneration mechanisms. We find that Wallenda (Wnd), a conserved mitogen-activated protein kinase (MAPK) kinase kinase homologous to dual leucine zipper kinase, functions as an upstream mediator of a cell-autonomous injury signaling cascade that involves the c-Jun NH2-terminal kinase MAPK and Fos transcription factor. Wnd is physically transported in axons, and axonal transport is required for the injury signaling mechanism. Wnd is regulated by a conserved E3 ubiquitin ligase, named Highwire (Hiw) in Drosophila. Injury induces a rapid increase in Wnd protein concomitantly with a decrease in Hiw protein. In hiw mutants, injury signaling is constitutively active, and neurons initiate a faster regenerative response. Our data suggest that the regulation of Wnd protein turnover by Hiw can function as a damage surveillance mechanism for responding to axonal injury.
引用
收藏
页码:211 / 223
页数:13
相关论文
共 70 条
[1]   Nerve injury signaling [J].
Abe, Namiko ;
Cavalli, Valeria .
CURRENT OPINION IN NEUROBIOLOGY, 2008, 18 (03) :276-283
[2]   Sunday Driver Interacts with Two Distinct Classes of Axonal Organelles [J].
Abe, Namiko ;
Almenar-Queralt, Angels ;
Lillo, Concepcion ;
Shen, Zhouxin ;
Lozach, Jean ;
Briggs, Steven P. ;
Williams, David S. ;
Goldstein, Lawrence S. B. ;
Cavalli, Valeria .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2009, 284 (50) :34628-34639
[3]   wishful thinking encodes a BMP type II receptor that regulates synaptic growth in Drosophila [J].
Aberle, H ;
Haghighi, AP ;
Fetter, RD ;
McCabe, BD ;
Magalhaes, TR ;
Goodman, CS .
NEURON, 2002, 33 (04) :545-558
[4]  
Allen MJ, 1999, J NEUROSCI, V19, P9374
[5]   Identification of an axonal kinesin-3 motor for fast anterograde vesicle transport that facilitates retrograde transport of neuropeptides [J].
Barkus, Rosemarie V. ;
Klyachko, Olga ;
Horiuchi, Dai ;
Dickson, Barry J. ;
Saxton, William M. .
MOLECULAR BIOLOGY OF THE CELL, 2008, 19 (01) :274-283
[6]   Distinct Roles of c-Jun N-Terminal Kinase Isoforms in Neurite Initiation and Elongation during Axonal Regeneration [J].
Barnat, Monia ;
Enslen, Herve ;
Propst, Friedrich ;
Davis, Roger J. ;
Soares, Sylvia ;
Nothias, Fatiha .
JOURNAL OF NEUROSCIENCE, 2010, 30 (23) :7804-7816
[7]   Uses for JNK: the many and varied substrates of the c-Jun N-terminal kinases [J].
Bogoyevitch, Marie A. ;
Kobe, Bostjan .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 2006, 70 (04) :1061-+
[8]   JNK signaling pathway required for wound healing in regenerating Drosophila wing imaginal discs [J].
Bosch, M ;
Serras, F ;
Martín-Blanco, E ;
Baguñà, J .
DEVELOPMENTAL BIOLOGY, 2005, 280 (01) :73-86
[9]  
Boylan KLM, 2002, GENETICS, V162, P1211
[10]   Lethal kinesin mutations reveal amino acids important for ATPase activation and structural coupling [J].
Brendza, KM ;
Rose, DJ ;
Gilbert, SP ;
Saxton, WM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (44) :31506-31514