Broad Convolutional Neural Network Based Industrial Process Fault Diagnosis With Incremental Learning Capability

被引:263
作者
Yu, Wanke [1 ]
Zhao, Chunhui [1 ]
机构
[1] Zhejiang Univ, Coll Control Sci & Engn, Hangzhou 310027, Peoples R China
关键词
Fault diagnosis; Feature extraction; Maximum likelihood detection; Nonlinear filters; Convolutional neural networks; Neurons; Broad learning system; convolutional neural network; fault diagnosis; incremental learning; FISHER DISCRIMINANT-ANALYSIS; LEAST-SQUARES; ALGORITHM;
D O I
10.1109/TIE.2019.2931255
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Fault diagnosis, which identifies the root cause of the observed out-of-control status, is essential to counteracting or eliminating faults in industrial processes. Many conventional data-driven fault diagnosis methods ignore the fault tendency of abnormal samples, and they need a complete retraining process to include the newly collected abnormal samples or fault classes. In this article, a broad convolutional neural network (BCNN) is designed with incremental learning capability for solving the aforementioned issues. The proposed method combines several consecutive samples as a data matrix, and it then extracts both fault tendency and nonlinear structure from the obtained data matrix by using convolutional operation. After that, the weights in fully connected layers can be trained based on the obtained features and their corresponding fault labels. Because of the architecture of this network, the diagnosis performance of the BCNN model can be improved by adding newly generated additional features. Finally, the incremental learning capability of the proposed method is also designed, so that the BCNN model can update itself to include new coming abnormal samples and fault classes. The proposed method is applied both to a simulated process and a real industrial process. Experimental results illustrate that it can better capture the characteristics of the fault process, and effectively update diagnosis model to include new coming abnormal samples, and fault classes.
引用
收藏
页码:5081 / 5091
页数:11
相关论文
共 40 条
[1]  
[Anonymous], 2008, P 25 INT C MACHINE L
[2]  
[Anonymous], 2011, Acm T. Intel. Syst. Tec., DOI DOI 10.1145/1961189.1961199
[3]   Broad Learning System: An Effective and Efficient Incremental Learning System Without the Need for Deep Architecture [J].
Chen, C. L. Philip ;
Liu, Zhulin .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (01) :10-24
[4]   A rapid learning and dynamic stepwise updating algorithm for flat neural networks and the application to time-series prediction [J].
Chen, CLP ;
Wan, JZ .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 1999, 29 (01) :62-72
[5]   Multisensor Feature Fusion for Bearing Fault Diagnosis Using Sparse Autoencoder and Deep Belief Network [J].
Chen, Zhuyun ;
Li, Weihua .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2017, 66 (07) :1693-1702
[6]   Diagnosis of multiple and unknown faults using the causal map and multivariate statistics [J].
Chiang, Leo H. ;
Jiang, Benben ;
Zhu, Xiaoxiang ;
Huang, Dexian ;
Braatz, Richard D. .
JOURNAL OF PROCESS CONTROL, 2015, 28 :27-39
[7]   Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis [J].
Chiang, LH ;
Russell, EL ;
Braatz, RD .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2000, 50 (02) :243-252
[8]   Fault diagnosis based on Fisher discriminant analysis and support vector machines [J].
Chiang, LH ;
Kotanchek, ME ;
Kordon, AK .
COMPUTERS & CHEMICAL ENGINEERING, 2004, 28 (08) :1389-1401
[9]   A PLANT-WIDE INDUSTRIAL-PROCESS CONTROL PROBLEM [J].
DOWNS, JJ ;
VOGEL, EF .
COMPUTERS & CHEMICAL ENGINEERING, 1993, 17 (03) :245-255
[10]   Fuzzy Broad Learning System: A Novel Neuro-Fuzzy Model for Regression and Classification [J].
Feng, Shuang ;
Chen, C. L. Philip .
IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (02) :414-424