Covering Planar Sets

被引:0
作者
Tolmachev, A. D. [1 ]
Protasov, D. S. [1 ]
机构
[1] Natl Res Univ, Moscow Inst Phys & Technol, Moscow 141701, Russia
关键词
Borsuk problem; diameter of a set; coverings of planar sets; universal covering systems; chromatic number; CLIQUE-CHROMATIC NUMBERS; BOUNDS;
D O I
10.1134/S1064562421040141
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Methods for improving upper and lower bounds for various coverings of planar sets are proposed. New bounds for various numbers of partition constituents are presented, and suggestions for the generalization of the presented methods are offered.
引用
收藏
页码:196 / 199
页数:4
相关论文
共 17 条
[1]  
Aleksandrov N., 2012, MOSK FIZ TEKH I, V4, P11
[2]   Bounds on Borsuk Numbers in Distance Graphs of a Special Type [J].
Berdnikov, A., V ;
Raigorodskii, A. M. .
PROBLEMS OF INFORMATION TRANSMISSION, 2021, 57 (02) :136-142
[3]   A Remark on Lower Bounds for the Chromatic Numbers of Spaces of Small Dimension with Metrics l1 and l2 [J].
Bogolyubsky, L. I. ;
Raigorodskii, A. M. .
MATHEMATICAL NOTES, 2019, 105 (1-2) :180-203
[4]  
Borsuk K., 1933, FUND MATH, V20, P177, DOI DOI 10.4064/FM-20-1-177-190
[5]  
Dembinski M., 1985, DEMONSTR MATH, VXVIII, P517, DOI [10.1515/dema-1985-0211, DOI 10.1515/DEMA-1985-0211]
[6]   Covering planar sets [J].
Filimonov, V. P. .
SBORNIK MATHEMATICS, 2010, 201 (08) :1217-1248
[7]  
Koval V.O, 2020, ZAP NAUCHN SEM POMI, V497, P100
[8]   Ramsey theory in the n-space with Chebyshev metric [J].
Kupavskii, A. B. ;
Sagdeev, A. A. .
RUSSIAN MATHEMATICAL SURVEYS, 2020, 75 (05) :965-967
[9]  
LENZ H, 1956, JAHRESBER DTSCH MATH, V58, P87
[10]  
Pal, 1920, DANSKE VIDENSKAB SEL, V3