A d-dimensional extension of a Lemma of Huneke's and formulas for the Hilbert coefficients

被引:39
作者
Huckaba, S
机构
关键词
Hilbert-Samuel polynomial; depth; associated graded ring; Cohen-Macaulay;
D O I
10.1090/S0002-9939-96-03182-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A d-dimensional version is given of a 2-dimensional result due to C. Huneke. His result produced a formula relating the length lambda(I-n+1/JI(n)) to the difference P-I (n + 1) - H-I (n + 1), where I is primary for the maximal ideal of a, 2-dimensional Cohen-Macaulay local ring R, J is a minimal reduction of I, H-I(n) = lambda(R/I-n), and P-I(n) is the Hilbert-Samuel polynomial of I. We produce a formula that is valid for arbitrary dimension, and then use it to establish some formulas for the Hilbert coefficients of I. We also include a characterization, in terms of the Hilbert coefficients of I, of the condition depth(G(I)) greater than or equal to d-1.
引用
收藏
页码:1393 / 1401
页数:9
相关论文
共 19 条
[1]  
[Anonymous], 1994, CONT MATH
[2]  
[Anonymous], TOKYO J MATH
[3]  
Bruns W., 1993, CAMBRIDGE STUDIES AD, V39
[4]  
GUERRIERI A, 1993, THESIS PURDUE U
[5]  
HUNEKE C, 1987, MICH MATH J, V34, P293
[6]  
KIRBY D, 1982, J LOND MATH SOC, V25, P449
[7]  
MARLEY T, 1989, J LOND MATH SOC, V40, P1
[8]  
Marley Thomas John, 1989, Hilbert functions of ideals in Cohen-Macaulay rings
[9]  
Nagata M., 1975, LOCAL RINGS
[10]  
NARITA M, 1963, P CAMB PHILOS SOC, V59, P269