On the decay of the energy for radial solutions in Moore-Gibson-Thompson thermoelasticity

被引:17
作者
Bazarra, Noelia [1 ]
Fernandez, Jose R. [1 ]
Quintanilla, Ramon [2 ]
机构
[1] Univ Vigo, Dept Matemat Aplicada 1, Vigo, Spain
[2] Univ Politecn Cataluna, ESEIAAT, Dept Matemat, Barcelona, Spain
关键词
Moore-Gibson-Thompson thermoelasticity; radial symmetry; energy decay; numerical simulations; EQUATION; STABILITY; MEMORY;
D O I
10.1177/1081286521994258
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we consider the Moore-Gibson-Thompson thermoelastic theory. We restrict our attention to radially symmetric solutions and we prove the exponential decay with respect to the time variable. We demonstrate this fact with the help of energy arguments. Later, we give some numerical simulations to illustrate this behaviour.
引用
收藏
页码:1507 / 1514
页数:8
相关论文
共 30 条
[1]   Analysis of a Moore-Gibson-Thompson thermoelastic problem [J].
Bazarra, N. ;
Fernandez, J. R. ;
Quintanilla, R. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 382
[2]   A poro-thermoelastic problem with dissipative heat conduction [J].
Bazarra, Noelia ;
Fernandez, Jose R. ;
Magana, Antonio ;
Quintanilla, Ramon .
JOURNAL OF THERMAL STRESSES, 2020, 43 (11) :1415-1436
[3]  
Ciarlet P.G., 1991, Finite Element Methods, VII, P17
[4]  
Conejero JA., 2015, APPL MATH INFORM SCI, V9, P2233
[5]   Thermoelasticity of Moore-Gibson-Thompson type with history dependence in the temperature [J].
Conti, Monica ;
Pata, Vittorino ;
Quintanilla, Ramon .
ASYMPTOTIC ANALYSIS, 2020, 120 (1-2) :1-21
[6]   On the analyticity of the MGT-viscoelastic plate with heat conduction [J].
Conti, Monica ;
Pata, Vittorino ;
Pellicer, Marta ;
Quintanilla, Ramon .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (10) :7862-7880
[7]   On a Fourth-Order Equation of Moore-Gibson-Thompson Type [J].
Dell'Oro, Filippo ;
Pata, Vittorino .
MILAN JOURNAL OF MATHEMATICS, 2017, 85 (02) :215-234
[8]   On the Moore-Gibson-Thompson Equation and Its Relation to Linear Viscoelasticity [J].
Dell'Oro, Filippo ;
Pata, Vittorino .
APPLIED MATHEMATICS AND OPTIMIZATION, 2017, 76 (03) :641-655
[9]   The Moore-Gibson-Thompson equation with memory in the critical case [J].
Dell'Oro, Filippo ;
Lasiecka, Irena ;
Pata, Vittorino .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (07) :4188-4222
[10]   Moore-Gibson-Thompson theory for thermoelastic dielectrics [J].
Fernandez, J. R. ;
Quintanilla, R. .
APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2021, 42 (02) :309-316