Geodesic Patterns

被引:56
作者
Pottmann, Helmut [1 ]
Huang, Qixing [2 ]
Deng, Bailin [1 ]
Schiftner, Alexander [1 ]
Kilian, Martin [1 ]
Guibas, Leonidas [2 ]
Wallner, Johannes [1 ,3 ]
机构
[1] TU Wien, Vienna, Austria
[2] Stanford Univ, Stanford, CA 94305 USA
[3] Graz Univ Technol, Graz, Austria
来源
ACM TRANSACTIONS ON GRAPHICS | 2010年 / 29卷 / 04期
基金
奥地利科学基金会; 美国国家科学基金会;
关键词
computational differential geometry; architectural geometry; geometry of webs; timber rib shell; cladding; freeform surface; pattern; geodesic; Jacobi field; PATHS;
D O I
10.1145/1778765.1778780
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Geodesic curves in surfaces are not only minimizers of distance, but they are also the curves of zero geodesic (sideways) curvature. It turns out that this property makes patterns of geodesics the basic geometric entity when dealing with the cladding of a freeform surface with wooden panels which do not bend sideways. Likewise a geodesic is the favored shape of timber support elements in freeform architecture, for reasons of manufacturing and statics. Both problem areas are fundamental in freeform architecture, but so far only experimental solutions have been available. This paper provides a systematic treatment and shows how to design geodesic patterns in different ways: The evolution of geodesic curves is good for local studies and simple patterns; the level set formulation can deal with the global layout of multiple patterns of geodesics; finally geodesic vector fields allow us to interactively model geodesic patterns and perform surface segmentation into panelizable parts.
引用
收藏
页数:10
相关论文
共 28 条
[1]  
[Anonymous], LECT NOTES
[2]  
Blaschke B., 1938, GEOMETRIE DER GEWEBE
[3]   Geodesic active contours [J].
Caselles, V ;
Kimmel, R ;
Sapiro, G .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 1997, 22 (01) :61-79
[4]   Shortest paths on a polyhedron .1. Computing shortest paths [J].
Chen, JD ;
Han, YJ .
INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 1996, 6 (02) :127-144
[5]   Algorithm 887: CHOLMOD, Supernodal Sparse Cholesky Factorization and Update/Downdate [J].
Chen, Yanqing ;
Davis, Timothy A. ;
Hager, William W. ;
Rajamanickam, Sivasankaran .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2008, 35 (03)
[6]   WEB GEOMETRY [J].
CHERN, SS .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 6 (01) :1-8
[7]  
do Carmo M.P., 1992, RIEMANNIAN GEOMETRY
[8]  
Do Carmo M.P., 1976, Differential Geometry of Curves and Surfaces
[9]  
Fedkiw S. O. R., 2002, SURFACES, V44, P685
[10]   Interpolation of triangle hierarchies [J].
Friedrich, A ;
Polthier, K ;
Schmies, M .
VISUALIZATION '98, PROCEEDINGS, 1998, :391-+