Modeling of diffusion through polymeric membranes

被引:23
作者
Liu, Q
Kee, D [1 ]
机构
[1] Tulane Univ, Dept Chem & Biomol Engn, New Orleans, LA 70118 USA
[2] Tulane Univ, TIMES, New Orleans, LA 70118 USA
关键词
diffusion; Hamiltonian formulation; dissipation bracket;
D O I
10.1007/s00397-004-0410-7
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Diffusion, coupled with rheology, of a simple fluid through a complex polymeric membrane is modeled using the Poisson and dissipation bracket formalism. A set of governing equations describing the time evolution of concentration, flux, and internal structure of the complex polymeric membrane is obtained. Two parameters, which characterize the importance of elasticity and mixing properties, appear in the governing equations. An extension of Fick's second law is derived for the flux evolution. The model describes the diffusion process quantitatively quite well.
引用
收藏
页码:287 / 294
页数:8
相关论文
共 31 条
[1]  
ALFREY T, 1966, J POLYM SCI C, V12, P249
[2]  
[Anonymous], 1995, TRANSPORT PROPERTIES
[3]  
[Anonymous], DOCUMENTS MODERN PHY
[4]   POISSON BRACKET FORMULATION OF INCOMPRESSIBLE-FLOW EQUATIONS IN CONTINUUM-MECHANICS [J].
BERIS, AN ;
EDWARDS, BJ .
JOURNAL OF RHEOLOGY, 1990, 34 (01) :55-78
[5]  
Crank J., 1968, DIFFUSION POLYM
[6]   Multicomponent diffusion in polymeric liquids [J].
Curtiss, CF ;
Bird, RB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (15) :7440-7445
[7]  
De Kee D, 2000, J APPL POLYM SCI, V78, P1250, DOI 10.1002/1097-4628(20001107)78:6<1250::AID-APP110>3.0.CO
[8]  
2-Z
[9]   MUTUAL DIFFUSION IN CONCENTRATED POLYMER-SOLUTIONS UNDER A SMALL DRIVING FORCE [J].
DURNING, CJ ;
TABOR, M .
MACROMOLECULES, 1986, 19 (08) :2220-2232
[10]   Perturbation analysis of Thomas and Windle's model of case II transport [J].
Durning, CJ ;
Edwards, DA ;
Cohen, DS .
AICHE JOURNAL, 1996, 42 (07) :2025-2035