Polyimide nonwoven fabric-reinforced, flexible phosphosilicate glass composite membranes for high-temperature/low-humidity proton exchange membrane fuel cells

被引:23
作者
Lim, Jun-Muk [1 ]
Won, Ji-Hye [1 ]
Lee, Hyeon-Ji [1 ]
Hong, Young Taik [2 ]
Lee, Moo-Seok [3 ]
Ko, Chang Hyun [4 ]
Lee, Sang-Young [1 ]
机构
[1] Kangwon Natl Univ, Coll Engn, Dept Chem Engn, Chunchon 200701, Kangwondo, South Korea
[2] Korea Res Inst Chem Technol, Energy Mat Res Ctr, Taejon 305600, South Korea
[3] Kolon Cent Res Pk, Eco Res Inst, Yongin 446797, Kyunggido, South Korea
[4] Chonnam Natl Univ, Sch Appl Chem Engn, Kwangju 500757, South Korea
基金
新加坡国家研究基金会;
关键词
LITHIUM ION BATTERIES; ORGANIC HYBRID FILMS; SOL-GEL PROCESS; WATER/VAPOR MANAGEMENT; ORTHOPHOSPHORIC ACID; POLYMER; STATE; 3-GLYCIDOXYPROPYLTRIMETHOXYSILANE; COPOLYMERS; NAFION;
D O I
10.1039/c2jm33406b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We demonstrate polyimide (PI) nonwoven fabric-reinforced, flexible proton-conductive phosphosilicate glass composite membranes for potential application in high-temperature/low-humidity proton exchange membrane fuel cells (PEMFCs). The new reinforced composite membrane is fabricated via the impregnation of a 3-glycidyloxypropyl trimethoxysilane (GPTMS)/orthophosphoric acid (H3PO4) mixture into a PI nonwoven substrate followed by in situ sol-gel synthesis and hydrothermal treatment. This unique structural integrity enables the reinforced composite membrane to provide unprecedented improvement in the mechanical properties (notably flexibility and thickness) over typical bulk phosphosilicate glasses that are highly fragile and thick. Meanwhile, the highly porous structure of the PI reinforcing framework allows for the facile formation of a three-dimensionally interconnected phosphosilicate glass matrix in the reinforced composite membrane, which in turn offers favorable pathways for proton transport. Another advantageous feature of the reinforced composite membrane is higher proton conductivity under dehumidified conditions, as compared to a hydration-dependent polymer electrolyte membrane such as sulfonated poly(arylene ether sulfone) (SPAES). This superior proton conductivity of the reinforced composite membrane is further discussed with in-depth consideration of its architectural novelty and proton transport phenomena governed by the Grotthuss mechanism.
引用
收藏
页码:18550 / 18557
页数:8
相关论文
共 32 条
  • [1] Hybrid organic/inorganic sol-gel materials for proton conducting membranes
    Aparicio, M
    Durán, A
    [J]. JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, 2004, 31 (1-3) : 103 - 107
  • [2] FUEL CELLS Engineering the next generation
    Buratto, Steven K.
    [J]. NATURE NANOTECHNOLOGY, 2010, 5 (03) : 176 - 176
  • [3] A polymer electrolyte-skinned active material strategy toward high-voltage lithium ion batteries: a polyimide-coated LiNi0.5Mn1.5O4 spinel cathode material case
    Cho, Ju-Hyun
    Park, Jang-Hoon
    Lee, Myeong-Hee
    Song, Hyun-Kon
    Lee, Sang-Young
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (05) : 7124 - 7131
  • [4] Recent developments in proton exchange membranes for fuel cells
    Devanathan, Ram
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2008, 1 (01) : 101 - 119
  • [5] UV-curable semi-interpenetrating polymer network-integrated, highly bendable plastic crystal composite electrolytes for shape-conformable all-solid-state lithium ion batteries
    Ha, Hyo-Jeong
    Kil, Eun-Hye
    Kwon, Yo Han
    Kim, Je Young
    Lee, Chang Kee
    Lee, Sang-Young
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (04) : 6491 - 6499
  • [6] A self-standing, UV-cured polymer networks-reinforced plastic crystal composite electrolyte for a lithium-ion battery
    Ha, Hyo-Jeong
    Kwon, Yo Han
    Kim, Je Young
    Lee, Sang-Young
    [J]. ELECTROCHIMICA ACTA, 2011, 57 : 40 - 45
  • [7] Alternative polymer systems for proton exchange membranes (PEMs)
    Hickner, MA
    Ghassemi, H
    Kim, YS
    Einsla, BR
    McGrath, JE
    [J]. CHEMICAL REVIEWS, 2004, 104 (10) : 4587 - 4611
  • [8] The gas barrier coating of 3-aminopropyltriethoxysilane on polypropylene film
    Jang, Kyoungmi
    Kim, Hyunjoon
    [J]. JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, 2007, 41 (01) : 19 - 24
  • [9] Fast proton-conducting glass membrane based on porous phosphosilicate and perfluorosulfonic acid polymer
    Jiang, Fengjing
    Di, Zhigang
    Li, Haibin
    Tu, Hengyong
    Yu, Qingchun
    [J]. JOURNAL OF POWER SOURCES, 2011, 196 (03) : 1048 - 1054
  • [10] Thermal studies of the state of water in proton conducting fuel cell membranes
    Kalapos, T. L.
    Decker, B.
    Every, H. A.
    Ghassemi, H.
    Zawodzinski, T. A., Jr.
    [J]. JOURNAL OF POWER SOURCES, 2007, 172 (01) : 14 - 19