Phase diagram of interacting Fermi gas in spin-orbit coupled square lattices

被引:15
作者
Zhang, Xin [1 ]
Wu, Wei [2 ]
Li, Gang [3 ]
Wen, Lin [4 ]
Sun, Qing [1 ]
Ji, An-Chun [1 ]
机构
[1] Capital Normal Univ, Dept Phys, Ctr Theoret Phys, Beijing 100048, Peoples R China
[2] Ecole Polytech, Ctr Phys Theor, F-91128 Palaiseau, France
[3] Univ Wurzburg, Lehrstuhl Theoret Physick, D-97074 Wurzburg, Germany
[4] Chongqing Normal Univ, Coll Phys & Elect Engn, Chongqing 401331, Peoples R China
关键词
spin-orbit coupling; metal-insulator transition; cluster dynamical mean-field theory; MOTT INSULATOR; HUBBARD-MODEL; QUANTUM; ATOMS; TRANSITION; SUPERFLUID; PHYSICS;
D O I
10.1088/1367-2630/17/7/073036
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The spin-orbit (SO) coupled optical lattices have attracted considerable interest. In this paper, we investigate the phase diagram of the interacting Fermi gas with Rashba-type spin-orbit coupling (SOC) on a square optical lattice. The phase diagram is investigated in a wide range of atomic interactions and SOC strength within the framework of the cluster dynamical mean-field theory (CDMFT). We show that the interplay between the atomic interactions and SOC results in a rich phase diagram. In the deep Mott insulator regime, the SOC can induce diverse spin ordered phases. Whereas near the metal-insulator transition (MIT), the SOC tends to destroy the conventional antiferromagnetic fluctuations, giving rise to distinctive features of the MIT. Furthermore, the strong fluctuations arising from SOC may destroy the magnetic orders and trigger an order to disorder transition in close proximity of the MIT.
引用
收藏
页数:8
相关论文
共 74 条
[41]   Cellular dynamical mean field approach to strongly correlated systems -: art. no. 186401 [J].
Kotliar, G ;
Savrasov, SY ;
Pálsson, G ;
Biroli, G .
PHYSICAL REVIEW LETTERS, 2001, 87 (18) :186401-1
[42]   Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond [J].
Lewenstein, Maciej ;
Sanpera, Anna ;
Ahufinger, Veronica ;
Damski, Bogdan ;
Sen, Aditi ;
Sen, Ujjwal .
ADVANCES IN PHYSICS, 2007, 56 (02) :243-379
[43]   Spin-orbit-coupled Bose-Einstein condensates [J].
Lin, Y. -J. ;
Jimenez-Garcia, K. ;
Spielman, I. B. .
NATURE, 2011, 471 (7336) :83-U99
[44]   Z2 spin liquid and chiral antiferromagnetic phase in the Hubbard model on a honeycomb lattice [J].
Lu, Yuan-Ming ;
Ran, Ying .
PHYSICAL REVIEW B, 2011, 84 (02)
[45]   Quantum cluster theories [J].
Maier, T ;
Jarrell, M ;
Pruschke, T ;
Hettler, MH .
REVIEWS OF MODERN PHYSICS, 2005, 77 (03) :1027-1080
[46]   Enlarging and cooling the Neel state in an optical lattice [J].
Mathy, Charles J. M. ;
Huse, David A. ;
Hulet, Randall G. .
PHYSICAL REVIEW A, 2012, 86 (02)
[47]   Quantum spin liquid emerging in two-dimensional correlated Dirac fermions [J].
Meng, Z. Y. ;
Lang, T. C. ;
Wessel, S. ;
Assaad, F. F. ;
Muramatsu, A. .
NATURE, 2010, 464 (7290) :847-U50
[48]   ANISOTROPIC SUPEREXCHANGE INTERACTION AND WEAK FERROMAGNETISM [J].
MORIYA, T .
PHYSICAL REVIEW, 1960, 120 (01) :91-98
[49]   Two Fermions in a Double Well: Exploring a Fundamental Building Block of the Hubbard Model [J].
Murmann, Simon ;
Bergschneider, Andrea ;
Klinkhamer, Vincent M. ;
Zuern, Gerhard ;
Lompe, Thomas ;
Jochim, Selim .
PHYSICAL REVIEW LETTERS, 2015, 114 (08)
[50]   Cold atoms in non-Abelian gauge potentials: From the Hofstadter "Moth" to lattice gauge theory [J].
Osterloh, K ;
Baig, M ;
Santos, L ;
Zoller, P ;
Lewenstein, M .
PHYSICAL REVIEW LETTERS, 2005, 95 (01)