共 50 条
Carteolol hydrochloride reduces visible light-induced retinal damage in vivo and BSO/glutamate-induced oxidative stress in vitro
被引:11
|作者:
Matsuo, Masato
[1
,2
]
Kuse, Yoshiki
[2
]
Takahashi, Kei
[2
]
Kuwahara, Keiichi
[3
]
Tanito, Masaki
[1
]
Kaidzu, Sachiko
[1
]
Shimazawa, Masamitsu
[2
]
Hara, Hideaki
[2
]
Ohira, Akihiro
[1
]
机构:
[1] Shimane Univ, Fac Med, Dept Ophthalmol, Enya 89-1, Izumo, Shimane 6938501, Japan
[2] Gifu Pharmaceut Univ, Dept Biofunct Evaluat, Mol Pharmacol, Gifu, Japan
[3] Otsuka Pharmaceut Co Ltd, Div Dermatol & Ophthalmol, Osaka, Japan
基金:
日本学术振兴会;
关键词:
Carteolol hydrochloride;
Light-induced retinal damage;
Oxidative stress;
Antioxidative potential;
Reactive oxygen species;
GLAUCOMA;
ANTIOXIDANTS;
PATHOGENESIS;
APOPTOSIS;
PROTECTS;
CELLS;
D O I:
10.1016/j.jphs.2018.11.010
中图分类号:
R9 [药学];
学科分类号:
1007 ;
摘要:
The purpose of this study was to determine whether carteolol eye drops, a beta-adrenoceptor antagonist used as an intraocular hypotensive agent, has protective effects against the light-induced oxidative stress in retina. Dark-adapted pigmented rats were pre-treated with topical carteolol ophthalmic solution or saline and then exposed to visible light. The effects on electroretinogram (ERG), morphology, oxidative stress, and expression of mRNAs in the retinas were determined. The L-buthionine-(S,R)-sulfoximine (BSO)/glutamate-induced oxidative stress in 661Wcells, a murine photoreceptor cell line, was evaluated by cell death assays, production of reactive oxygen species (ROS), and activation of caspase. In vivo studies showed that exposure to light caused a decrease in the amplitudes of ERGs and the outer nuclear layer (ONL) thickness and an increase of the 8-hydroxy-2'-deoxyguanosine (8-OHdG)-positive cells in the ONL. These changes were significantly reduced by pre-treatment with carteolol. Carteolol also significantly up-regulated the mRNA levels of thioredoxin 1 and glutathione peroxidase 1 compared to saline-treated group. Moreover, carteolol and timolol, another beta-adrenoceptor antagonist, significantly inhibited BSO/glutamate-induced cell death and reduced caspase-3/7 activity and ROS production in vitro. Therefore, carteolol could protect retina from light-induced damage with multiple effects such as enhancing the antioxidative potential and decreasing the intracellular ROS production. (c) 2018 The Authors. Production and hosting by Elsevier B.V. on behalf of Japanese Pharmacological Society. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:84 / 90
页数:7
相关论文