Classical Valence Bond Approach by Modern Methods

被引:222
作者
Wu, Wei [1 ,2 ]
Su, Peifeng [1 ,2 ]
Shaik, Sason [3 ,4 ]
Hiberty, Philippe C. [5 ]
机构
[1] Xiamen Univ, State Key Lab Phys Chem Solid Surfaces, Fujian Prov Key Lab Theoret & Computat Chem, Xiamen 361005, Fujian, Peoples R China
[2] Xiamen Univ, Coll Chem & Chem Engn, Xiamen 361005, Fujian, Peoples R China
[3] Hebrew Univ Jerusalem, Inst Chem, IL-91904 Jerusalem, Israel
[4] Hebrew Univ Jerusalem, Lise Meitner Minerva Ctr Computat Quantum Chem, IL-91904 Jerusalem, Israel
[5] Univ Paris Sud, Lab Chim Phys, Grp Chim Theor, CNRS,UMR 8000, F-91405 Orsay, France
基金
以色列科学基金会; 中国国家自然科学基金;
关键词
CHEMICAL-REACTION MECHANISMS; LOW-LYING STATES; GENERALIZED MOLLER-PLESSET; DENSITY-FUNCTIONAL THEORY; VB WAVE-FUNCTIONS; PAIRED DIRADICAL CHARACTER; SPIN-COUPLED DESCRIPTION; IMPROVED QUANTUM-THEORY; MANY-ELECTRON SYSTEMS; AB-INITIO VB/MM;
D O I
10.1021/cr100228r
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Valence bond (VB) theory expresses the molecular wave function as a combination of explicit covalent and ionic structures based on pure atomic orbitals (AOs) or hybrid atomic orbitals (HAOs). The resurgence of modern classical VB theory involves the development of several methodological advances which allowed new and more accurate applications of the theory. The basic method, which was devised by Balint-Kurti and van Lenthe, is called the valence bond self-consistent field (VBSCF) method. The method optimizes VB orbitals and structural coefficients simultaneously and uses the same set of HAOs for all the structures. The VBSCF method branches into two sets of methods, one is the breathing-orbital VB (BOVB) method, where one uses the same VBSCF wave function. The valence bond second-order perturbation method (VBPT2) uses perturbation theory, taking the VBSCF wave function as the zeroth-order reference. The VBSCF method permits complete flexibility in the definition of the orbitals used for constructing VB structures.
引用
收藏
页码:7557 / 7593
页数:37
相关论文
共 314 条
[61]  
2-7
[62]   Valence bond descriptions of benzene and cyclobutadiene and their counterparts with localized bonds [J].
Dijkstra, F ;
Van Lenthe, JH ;
Havenith, RWA ;
Jenneskens, LW .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2003, 91 (04) :566-574
[63]  
Dijkstra F, 2001, J COMPUT CHEM, V22, P665, DOI 10.1002/jcc.1035
[64]   Gradients in valence bond theory [J].
Dijkstra, F ;
van Lenthe, JH .
JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (06) :2100-2108
[65]   Application and development of multiconfigurational localized perturbation theory [J].
Dunietz, BD ;
Friesner, RA .
JOURNAL OF CHEMICAL PHYSICS, 2001, 115 (24) :11052-11067
[66]  
DUPUIS M, 1980, NRCC SOFTWARE CATALO, V1
[67]   BONDING CAPABILITIES OF TRANSITION-METAL CARBONYL FRAGMENTS [J].
ELIAN, M ;
HOFFMANN, R .
INORGANIC CHEMISTRY, 1975, 14 (05) :1058-1076
[68]  
Frisch M., 2004, GAUSSIAN 03 REVISION, DOI DOI 10.1016/J.MOLSTRUC.2017.03.014
[69]  
Gallup G.A., 2002, Valence bond methods, DOI 10.1017/CBO9780511535383
[70]   POPULATION ANALYSES OF VALENCE-BOND WAVEFUNCTIONS AND BEH2 [J].
GALLUP, GA ;
NORBECK, JM .
CHEMICAL PHYSICS LETTERS, 1973, 21 (03) :495-500