SOME THEOREMS ON LEIBNIZ ALGEBRAS

被引:62
作者
Barnes, Donald W. [1 ]
机构
[1] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
关键词
Engel subalgebras; Leibniz algebras; Nilpotent; Subnormal; LIE-ALGEBRAS;
D O I
10.1080/00927872.2010.489529
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If U is a subnormal subalgebra of a finite-dimensional Leibniz algebra L and M is a finite-dimensional irreducible L-bimodule, then all U-bimodule composition factors of M are isomorphic. If U is a subnormal subalgebra of a finite-dimensional Leibniz algebra L, then the nilpotent residual of U is an ideal of L. Engel subalgebras of finite-dimensional Leibniz algebras are shown to have similar properties to those of Lie algebras. A subalgebra is shown to be a Cartan subalgebra if and only if it is minimal Engel, provided that the field has sufficiently many elements.
引用
收藏
页码:2463 / 2472
页数:10
相关论文
共 8 条
[1]  
Ayupov SA, 1998, ALGEBRA AND OPERATOR THEORY, P1
[2]   ON COHOMOLOGY OF SOLUBLE LIE ALGEBRAS [J].
BARNES, DW .
MATHEMATISCHE ZEITSCHRIFT, 1967, 101 (05) :343-&
[3]   SORTABILITY OF REPRESENTATIONS OF LIE-ALGEBRAS [J].
BARNES, DW .
JOURNAL OF ALGEBRA, 1973, 27 (03) :486-490
[4]   UNIVERSAL ENVELOPING-ALGEBRAS OF LEIBNIZ ALGEBRAS AND (CO)HOMOLOGY [J].
LODAY, JL ;
PIRASHVILI, T .
MATHEMATISCHE ANNALEN, 1993, 296 (01) :139-158
[5]   Conjugacy of Cartan subalgebras of complex finite-dimensional Leibniz algebras [J].
Omirov, B. A. .
JOURNAL OF ALGEBRA, 2006, 302 (02) :887-896
[6]   On nilpotent properties of Leibniz algebras [J].
Patsourakos, Allexandros .
COMMUNICATIONS IN ALGEBRA, 2007, 35 (12) :3828-3834
[7]  
Schenkman E., 1951, Amer. J. Math, V73, P453, DOI [10.2307/2372187, DOI 10.2307/2372187]
[8]  
ZASSENHAUS H, 1959, P GLASGOW MATH ASSOC, V4, P62