SOME THEOREMS ON LEIBNIZ ALGEBRAS

被引:62
作者
Barnes, Donald W. [1 ]
机构
[1] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
关键词
Engel subalgebras; Leibniz algebras; Nilpotent; Subnormal; LIE-ALGEBRAS;
D O I
10.1080/00927872.2010.489529
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If U is a subnormal subalgebra of a finite-dimensional Leibniz algebra L and M is a finite-dimensional irreducible L-bimodule, then all U-bimodule composition factors of M are isomorphic. If U is a subnormal subalgebra of a finite-dimensional Leibniz algebra L, then the nilpotent residual of U is an ideal of L. Engel subalgebras of finite-dimensional Leibniz algebras are shown to have similar properties to those of Lie algebras. A subalgebra is shown to be a Cartan subalgebra if and only if it is minimal Engel, provided that the field has sufficiently many elements.
引用
收藏
页码:2463 / 2472
页数:10
相关论文
共 8 条