Nanometer-scale Multiplexed Super-Resolution Imaging with an Economic 3D-DNA-PAINT Microscope

被引:28
作者
Auer, Alexander [1 ,2 ]
Schlichthaerle, Thomas [1 ,2 ]
Woehrstein, Johannes B. [1 ,2 ]
Schueder, Florian [1 ,2 ]
Strauss, Maximilian T. [1 ,2 ]
Grabmayr, Heinrich [1 ,2 ]
Jungmann, Ralf [1 ,2 ]
机构
[1] Ludwig Maximilians Univ Munchen, Fac Phys, Geschwister Scholl Pl 1, D-80539 Munich, Germany
[2] Max Planck Inst Biochem, Klopferspitz 18, D-82152 Martinsried, Germany
基金
欧洲研究理事会;
关键词
DNA; nanotechnology; photophysics; single-molecule microscopy; super-resolution imaging; DNA; MICROTUBULES; PAINT; LIMIT;
D O I
10.1002/cphc.201800630
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Optical super-resolution microscopy is rapidly changing the way imaging studies in the biological and biomedical sciences are conducted. Due to the unique capability of achieving molecular contrast using fluorescent labels and sub-diffraction resolution down to a few tens of nanometers, super-resolution is developing as an attractive imaging modality. While the increased spatial resolution has already enabled structural studies at unprecedented molecular detail, the wide-spread use of super-resolution approaches as a standard characterization technique in biological laboratories has thus far been prevented by mainly two issues: (1) Intricate sample preparation and image acquisition and (2) costly and complex instrumentation. We here introduce a combination of the recently developed super-resolution technique DNA-PAINT (DNA points accumulation for imaging in nanoscale topography) with an easy-to-replicate, custom-built 3D single-molecule microscope (termed liteTIRF) that is an order of magnitude more economic in cost compared to most commercial systems. We assay the performance of our system using synthetic two- and three-dimensional DNA origami structures and show the applicability to single- and multiplexed cellular imaging.
引用
收藏
页码:3024 / 3034
页数:11
相关论文
共 36 条
[1]   DNA-barcoded labeling probes for highly multiplexed Exchange-PAINT imaging [J].
Agasti, Sarit S. ;
Wang, Yu ;
Schueder, Florian ;
Sukumar, Aishwarya ;
Jungmann, Ralf ;
Yin, Peng .
CHEMICAL SCIENCE, 2017, 8 (04) :3080-3091
[2]  
[Anonymous], 2008, ANGEW CHE
[3]   OBSERVATION OF A SINGLE-BEAM GRADIENT FORCE OPTICAL TRAP FOR DIELECTRIC PARTICLES [J].
ASHKIN, A ;
DZIEDZIC, JM ;
BJORKHOLM, JE ;
CHU, S .
OPTICS LETTERS, 1986, 11 (05) :288-290
[4]   CELL-SUBSTRATE CONTACTS ILLUMINATED BY TOTAL INTERNAL-REFLECTION FLUORESCENCE [J].
AXELROD, D .
JOURNAL OF CELL BIOLOGY, 1981, 89 (01) :141-145
[5]   Imaging intracellular fluorescent proteins at nanometer resolution [J].
Betzig, Eric ;
Patterson, George H. ;
Sougrat, Rachid ;
Lindwasser, O. Wolf ;
Olenych, Scott ;
Bonifacino, Juan S. ;
Davidson, Michael W. ;
Lippincott-Schwartz, Jennifer ;
Hess, Harald F. .
SCIENCE, 2006, 313 (5793) :1642-1645
[6]   ATOMIC FORCE MICROSCOPE [J].
BINNIG, G ;
QUATE, CF ;
GERBER, C .
PHYSICAL REVIEW LETTERS, 1986, 56 (09) :930-933
[7]   Aberration-accounting calibration for 3D single-molecule localization microscopy [J].
Cabriel, Clement ;
Bourg, Nicolas ;
Dupuis, Guillaume ;
Leveque-Fort, Sandrine .
OPTICS LETTERS, 2018, 43 (02) :174-177
[8]  
Dempsey GT, 2011, NAT METHODS, V8, P1027, DOI [10.1038/nmeth.1768, 10.1038/NMETH.1768]
[9]  
Edelstein A. D., 2014, J BIOL METHODS
[10]   A simple method to estimate the average localization precision of a single-molecule localization microscopy experiment [J].
Endesfelder, Ulrike ;
Malkusch, Sebastian ;
Fricke, Franziska ;
Heilemann, Mike .
HISTOCHEMISTRY AND CELL BIOLOGY, 2014, 141 (06) :629-638