The thyroid-stimulating hormone (TSH) receptor signals via Gs to produce cAMP and via G(q/11) to produce inositol-1,4,5-trisphosphate, which is degraded to inositol monophosphate (IP1; phosphoinositide signaling). The potency of TSH for cAMP signaling is higher than for phosphoinositide signaling, and it was suggested that there are "spare receptors" for cAMP signaling. In a human embryonic kidney macrophage scavenger receptor-expressing (HEK-EM) 293 model system, there are no spare receptors, but the cells still exhibited 100-fold differences in potencies. Dose responses for TSH-stimulated dissociation of prebound 125I-TSH (negative cooperativity; EC50 = 70 mU/ml), which requires TSH binding to both sites of the TSH receptor (TSHR) homodimer, and TSH-stimulated IP1 production (EC50 = 50 mU/ml) were indistinguishable. Fluorescence resonance energy transfer (FRET) using tagged receptors showed that TSHR formed homodimers and heterodimers with two binding-deficient mutant TSHRs, L252P and C41S. When L252P or C41S was expressed with TSHR, that is, when TSHR/L252P or TSHR/C41S heterodimers could only bind one TSH, TSH-stimulated IP1 production was decreased relative to cAMP production. The slopes of linear regression analyses comparing fold stimulation by TSH of IP1 vs. cAMP production were 0.044 +/- 0.0047, 0.0043 +/- 0.0041, and 0.0059 +/- 0.0014 for cells expressing TSHR alone, TSHR and L252P, or TSHR and C41S, respectively. We suggest that TSHR coupling to phosphoinositide signaling is dependent on binding 2 molecules of TSH to TSHR homodimer, causing a conformational change allowing coupling to G(q/11).Allen, M. D., Neumann, S., Gershengorn, M. C. Occupancy of both sites on the thyrotropin (TSH) receptor dimer is necessary for phosphoinositide signaling. FASEB J. 25, 3687-3694 (2011). www.fasebj.org