A maximally superintegrable system on an n-dimensional space of nonconstant curvature

被引:44
作者
Ballesteros, A. [3 ]
Enciso, A. [4 ]
Herranz, F. J. [3 ]
Ragnisco, O. [1 ,2 ]
机构
[1] Univ Roma 3, Dipartimento Fis, Via Vasca Navale 84, I-00146 Rome, Italy
[2] Inst Nazl Fis Nucl, I-00146 Rome, Italy
[3] Inst Nazl Fis Nucl, Dept Fis, I-00146 Rome, Italy
[4] Univ Complutense, Dept Fis Teor 1, E-28040 Madrid, Spain
关键词
superintegrable systems; variable curvature; coalgebra symmetry;
D O I
10.1016/j.physd.2007.09.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a novel Hamiltonian system in n dimensions which admits the maximal number 2n - 1 of functionally independent, quadratic first integrals. This system turns out to be the first example of a maximally superintegrable Hamiltonian on an n-dimensional Riemannian space of nonconstant curvature, and it can be interpreted as the intrinsic Smorodinsky-Winternitz system on such a space. Moreover, we provide three different complete sets of integrals in involution and solve the equations of motion in closed form. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:505 / 509
页数:5
相关论文
共 38 条
[21]   Superintegrability with third-order integrals in quantum and classical mechanics [J].
Gravel, S ;
Winternitz, P .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (12) :5902-5912
[22]  
HUAUX A, 1976, ANN MAT PUR APPL, V108, P251
[23]   Superintegrability on Three-Dimensional Riemannian and Relativistic Spaces of Constant Curvature [J].
Jose Herranz, Francisco ;
Ballesteros, Angel .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2006, 2
[24]  
KAININS EG, 1984, ADV MATH, V51, P91
[25]  
Kalnins E.G., 1986, SEPARATION VARIABLES
[26]   Second order superintegrable systems in conformally flat spaces. IV. The classical 3D Stackel transform and 3D classification theory [J].
Kalnins, EG ;
Kress, JM ;
Miller, W .
JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (04)
[27]   Superintegrability in a two-dimensional space of nonconstant curvature [J].
Kalnins, EG ;
Kress, JM ;
Winternitz, P .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (02) :970-983
[28]   Superintegrable systems in Darboux spaces [J].
Kalnins, EG ;
Kress, JM ;
Miller, W ;
Winternitz, P .
JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (12) :5811-5848
[29]   On superintegrable symmetry-breaking potentials in N-dimensional Euclidean space [J].
Kalnins, EG ;
Williams, GC ;
Miller, W ;
Pogosyan, GS .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (22) :4755-4773
[30]  
Koenigs G., 1972, Lecons sur la theorie generale des surfaces, P368