A maximally superintegrable system on an n-dimensional space of nonconstant curvature

被引:44
作者
Ballesteros, A. [3 ]
Enciso, A. [4 ]
Herranz, F. J. [3 ]
Ragnisco, O. [1 ,2 ]
机构
[1] Univ Roma 3, Dipartimento Fis, Via Vasca Navale 84, I-00146 Rome, Italy
[2] Inst Nazl Fis Nucl, I-00146 Rome, Italy
[3] Inst Nazl Fis Nucl, Dept Fis, I-00146 Rome, Italy
[4] Univ Complutense, Dept Fis Teor 1, E-28040 Madrid, Spain
关键词
superintegrable systems; variable curvature; coalgebra symmetry;
D O I
10.1016/j.physd.2007.09.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a novel Hamiltonian system in n dimensions which admits the maximal number 2n - 1 of functionally independent, quadratic first integrals. This system turns out to be the first example of a maximally superintegrable Hamiltonian on an n-dimensional Riemannian space of nonconstant curvature, and it can be interpreted as the intrinsic Smorodinsky-Winternitz system on such a space. Moreover, we provide three different complete sets of integrals in involution and solve the equations of motion in closed form. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:505 / 509
页数:5
相关论文
共 38 条
[1]   The Toda lattice is super-integrable [J].
Agrotis, MA ;
Damianou, PA ;
Sophocleous, C .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 365 (01) :235-243
[2]  
[Anonymous], NICHTEUKLIDISCHE GEO
[3]  
Arnol'd V.I., 1997, MATH ASPECTS CLASSIC
[4]   Maximal superintegrability on N-dimensional curved spaces [J].
Ballesteros, A ;
Herranz, FJ ;
Santander, M ;
Sanz-Gil, T .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (07) :L93-L99
[5]   CLASSICAL AND QUANTUM INTEGRABLE SYSTEMS: THE COALGEBRA APPROACH [J].
Ballesteros, A. ;
Musso, F. ;
Ragnisco, O. .
REGULAR & CHAOTIC DYNAMICS, 2002, 7 (04) :393-398
[6]   A systematic construction of completely integrable Hamiltonians from coalgebras [J].
Ballesteros, A ;
Ragnisco, O .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (16) :3791-3813
[7]   Universal integrals for superintegrable systems on N-dimensional spaces of constant curvature [J].
Ballesteros, Angel ;
Herranz, Francisco J. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (02) :F51-F59
[8]  
Bertrand J., 1873, CR HEBD ACAD SCI, V77, P849
[9]   A geometrical approach to the problem of integrability of Hamiltonian systems by separation of variables [J].
Bruce, AT ;
McLenaghan, RG ;
Smirnov, RG .
JOURNAL OF GEOMETRY AND PHYSICS, 2001, 39 (04) :301-322
[10]   Two new classes of isochronous Hamiltonian systems [J].
Calogero, F .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2004, 11 (02) :208-222