Defect engineering of photocatalysts for solar-driven conversion of CO2 into valuable fuels

被引:119
作者
He, Yiqiang [1 ]
Lei, Qiong [2 ]
Li, Chunguang [1 ]
Han, Yu [2 ]
Shi, Zhan [1 ]
Feng, Shouhua [1 ]
机构
[1] Jilin Univ, State Key Lab Inorgan Synth & Preparat Chem, Changchun 130012, Peoples R China
[2] King Abdullah Univ Sci & Technol KAUST, Adv Membranes & Porous Mat Ctr, Phys Sci & Engn Div, Thuwal 239556900, Saudi Arabia
关键词
CO2; photoreduction; Photocatalysts; Defect engineering; Dynamic carrier; GRAPHITIC CARBON NITRIDE; HIGHLY EFFICIENT; OXYGEN-VACANCY; ULTRATHIN NANOSHEETS; HYDROGEN-PRODUCTION; TITANIUM-DIOXIDE; CARRIER DYNAMICS; REDUCTION; TIO2; WATER;
D O I
10.1016/j.mattod.2021.03.021
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Photoreduction of CO2 into valuable fuels is a clean and sustainable way to mitigate the energy crisis and environmental problems. Factors limiting the efficiency of CO2 photoreduction include narrow-band light absorption, poor charge carrier separation and transport, and sluggish activation/reaction of CO2 on the surface of photocatalyst. In recent years, defect engineering of photocatalysts emerges as an effective method to improve their efficiency in the photocatalytic conversion of CO2 into useful fuels. This review is focused on discussing how structural defects can be used to modulate the electronic structure of the photocatalysts and activate the inert CO2 molecules. Special emphasis is placed on the important impact of defects on the charge carrier dynamics of the photocatalysts. Our discussions cover a variety of defective semiconductors, including metal oxides, metal sulfides, and two dimensional materials. In addition, the challenges and prospects of defect engineering in photoreduction of CO2 are also analyzed. This review aims to provide useful information about the fundamental principles of photoreduction of CO2 and guidance on the design and preparation of defective photocatalysts.
引用
收藏
页码:358 / 384
页数:27
相关论文
共 193 条
[1]   Energy-Transfer Efficiency in Eu-Doped ZnO Thin Films: The Effects of Oxidative Annealing on the Dynamics and the Intermediate Defect States [J].
Ahmed, Samah M. ;
Szymanski, Paul ;
El-Nadi, Lotfia M. ;
El-Sayed, Mostafa A. .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (03) :1765-1772
[2]   Metal-organic frameworks for photocatalytic CO2 reduction under visible radiation: A review of strategies and applications [J].
Alkhatib, Ismail Issa ;
Garlisi, Corrado ;
Pagliaro, Mario ;
Al-Ali, Khalid ;
Palmisano, Giovanni .
CATALYSIS TODAY, 2020, 340 :209-224
[3]   PHOTOCATALYTIC REDUCTION OF CO2 WITH H2O ON VARIOUS TITANIUM-OXIDE CATALYSTS [J].
ANPO, M ;
YAMASHITA, H ;
ICHIHASHI, Y ;
EHARA, S .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1995, 396 (1-2) :21-26
[4]   Well-designed ZnV2O6/g-C3N4 2D/2D nanosheets heterojunction with faster charges separation via pCN as mediator towards enhanced photocatalytic reduction of CO2 to fuels [J].
Bafaqeer, Abdullah ;
Tahir, Muhammad ;
Amin, Nor Aishah Saidina .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2019, 242 :312-326
[5]   Crystal phase engineering on photocatalytic materials for energy and environmental applications [J].
Bai, Song ;
Gao, Chao ;
Low, Jingxiang ;
Xiong, Yujie .
NANO RESEARCH, 2019, 12 (09) :2031-2054
[6]   Defect engineering in photocatalytic materials [J].
Bai, Song ;
Zhang, Ning ;
Gao, Chao ;
Xiong, Yujie .
NANO ENERGY, 2018, 53 :296-336
[7]   Effect of Crystal Imperfections on Reactivity and Photoreactivity of TiO2 (Rutile) with Oxygen, Water, and Bacteria [J].
Bak, Tadeusz ;
Nowotny, Janusz ;
Sucher, Nikolaus J. ;
Wachsman, Eric .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (32) :15711-15738
[8]   Ni-Nanocluster Modified Black TiO2 with Dual Active Sites for Selective Photocatalytic CO2 Reduction [J].
Billo, Tadesse ;
Fu, Fang-Yu ;
Raghunath, Putikam ;
Shown, Indrajit ;
Chen, Wei-Fu ;
Lien, Hsiang-Ting ;
Shen, Tzu-Hsien ;
Lee, Jyh-Fu ;
Chan, Ting-Shan ;
Huang, Kuo-You ;
Wu, Chih-I ;
Lin, M. C. ;
Hwang, Jih-Shang ;
Lee, Chih-Hao ;
Chen, Li-Chyong ;
Chen, Kuei-Hsien .
SMALL, 2018, 14 (02)
[9]   2D/2D Heterojunction of Ultrathin MXene/Bi2WO6 Nanosheets for Improved Photocatalytic CO2 Reduction [J].
Cao, Shaowen ;
Shen, Baojia ;
Tong, Tong ;
Fu, Junwei ;
Yu, Jiaguo .
ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (21)
[10]   Towards Solar Fuels from Water and CO2 [J].
Centi, Gabriele ;
Perathoner, Siglinda .
CHEMSUSCHEM, 2010, 3 (02) :195-208