Wave packet analysis of Schrodinger equations in analytic function spaces

被引:16
作者
Cordero, Elena [1 ]
Nicola, Fabio [2 ]
Rodin, Luigi [1 ]
机构
[1] Univ Turin, Dipartimento Matemat, I-10123 Turin, Italy
[2] Politecn Torino, Dipartimento Sci Matemat, I-10129 Turin, Italy
关键词
Fourier integral operators; Schrodinger equation; Analytic functions; Wave packet analysis; Gabor analysis; Gelfand-Shilov spaces; UNIMODULAR FOURIER MULTIPLIERS; TIME-FREQUENCY ANALYSIS; PSEUDODIFFERENTIAL-OPERATORS; PARAMETRICES; ALGEBRAS; NLS;
D O I
10.1016/j.aim.2015.03.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a class of linear Schrodinger equations in R-d, with analytic symbols. We prove a global-in-time integral representation for the corresponding propagator as a generalized Gabor multiplier with a window analytic and decaying exponentially at infinity, which is transported by the Hamiltonian flow. We then provide three applications of the above result: the exponential sparsity in phase space of the corresponding propagator with respect to Gabor wave packets, a wave packet characterization of Fourier integral operators with analytic phases and symbols, and the propagation of analytic singularities. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:182 / 209
页数:28
相关论文
共 54 条
[1]  
[Anonymous], THEORIE SPECTRALE OP
[2]  
[Anonymous], 1985, Grundlehren der mathematischen Wissenschaften Fundamental Principles of Mathematical Sciences
[3]  
[Anonymous], 1989, HARMONIC ANAL PHASE
[4]  
Asada K., 1978, J. Math. (N.S.), V4, P299
[5]  
Baffler B., 1980, SEM GOULAOUIC MEYER
[6]   Unimodular Fourier multipliers for modulation spaces [J].
Benyi, Arpad ;
Groechenig, Karlheinz ;
Okoudjou, Kasso A. ;
Rogers, Luke G. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 246 (02) :366-384
[7]  
Bony J., 1996, PROGR NONLINEAR DIFF, V21, P45
[8]  
Bony JM, 2009, PROG NONLINEAR DIFFE, V78, P59, DOI 10.1007/978-0-8176-4861-9_4
[9]   Regularity and decay of solutions of nonlinear harmonic oscillators [J].
Cappiello, Marco ;
Nicola, Fabio .
ADVANCES IN MATHEMATICS, 2012, 229 (02) :1266-1299
[10]  
Chazarain J., 1980, COMMUN PART DIFF EQ, V5, P595, DOI DOI 10.1080/0360530800882148