Zagreb indices of graphs

被引:58
作者
Das, Kinkar Ch [1 ]
Xu, Kexiang [2 ]
Nam, Junki [1 ]
机构
[1] Sungkyunkwan Univ, Dept Math, Suwon 440746, South Korea
[2] Nanjing Univ Aeronaut & Astronaut, Coll Sci, Nanjing 210016, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金; 新加坡国家研究基金会;
关键词
Graph; first Zagreb index; second Zagreb index; Narumi-Katayama index; inverse degree; MOLECULAR-ORBITALS; UPPER-BOUNDS; SUM; SQUARES; TREES;
D O I
10.1007/s11464-015-0431-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The first Zagreb index M-1(G) is equal to the sum of squares of the degrees of the vertices, and the second Zagreb index M-2(G) is equal to the sum of the products of the degrees of pairs of adjacent vertices of the underlying molecular graph G. In this paper, we obtain lower and upper bounds on the first Zagreb index M-1(G) of G in terms of the number of vertices (n), number of edges (m), maximum vertex degree (Delta), and minimum vertex degree (delta). Using this result, we find lower and upper bounds on M-2(G). Also, we present lower and upper bounds on M-2(G) + M-2((G) over bar) in terms of n, m, Delta, and delta, where G denotes the complement of G. Moreover, we determine the bounds on first Zagreb coindex (M) over bar (1)(G) and second Zagreb coindex (M) over bar (2)(G). Finally, we give a relation between the first Zagreb index and the second Zagreb index of graph G.
引用
收藏
页码:567 / 582
页数:16
相关论文
共 39 条
[1]  
[Anonymous], 1913, SITZUNGSBER ACAD WIS
[2]  
[Anonymous], 1987, Congr. Numer.
[3]   The Zagreb coindices of graph operations [J].
Ashrafi, A. R. ;
Doslic, T. ;
Hamzeh, A. .
DISCRETE APPLIED MATHEMATICS, 2010, 158 (15) :1571-1578
[4]  
BALABAN AT, 1983, TOP CURR CHEM, V114, P21
[5]  
Biler P., 2017, PROBLEMS MATH ANAL
[6]  
Bondy J. A., 2008, Graph Theory with Applications
[7]  
Bullen P.S., 1988, Means and their inequalities
[8]   Diameter and inverse degree [J].
Dankelmann, Peter ;
Swart, Henda C. ;
van den Berg, Paul .
DISCRETE MATHEMATICS, 2008, 308 (5-6) :670-673
[9]   Inverse degree and edge-connectivity [J].
Dankelmann, Peter ;
Hellwig, Angelika ;
Volkmann, Lutz .
DISCRETE MATHEMATICS, 2009, 309 (09) :2943-2947
[10]  
Das KC, 2004, MATCH-COMMUN MATH CO, P103