COARSE QUANTIZATION FOR RANDOM INTERLEAVED SAMPLING OF BANDLIMITED SIGNALS

被引:1
|
作者
Powell, Alexander M. [1 ]
Tanner, Jared [2 ]
Wang, Yang [3 ]
Yilmaz, Oezguer [4 ]
机构
[1] Vanderbilt Univ, Dept Math, Nashville, TN 37240 USA
[2] Univ Edinburgh, Sch Math, Edinburgh EH9 3JL, Midlothian, Scotland
[3] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
[4] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2012年 / 46卷 / 03期
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
Analog-to-digital conversion; bandlimited signals; interleaved sampling; random sampling; sampling expansions; Sigma-Delta quantization; TRIGONOMETRIC POLYNOMIALS; ORDER;
D O I
10.1051/m2an/2011057
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The compatibility of unsynchronized interleaved uniform sampling with Sigma-Delta analog-to-digital conversion is investigated. Let f be a bandlimited signal that is sampled on a collection of N interleaved grids {kT + T-n}(k is an element of Z) with offsets {T-n}(n=1)(N) subset of [0, T]. If the offsets T-n are chosen independently and uniformly at random from [0, T] and if the sample values of f are quantized with a first order Sigma-Delta algorithm, then with high probability the quantization error vertical bar f(t) - (f) over tilde (t)vertical bar is at most of order N-1 log N.
引用
收藏
页码:605 / 618
页数:14
相关论文
共 50 条
  • [31] The recovery of distorted bandlimited almost-periodic signals
    Irwin W. Sandberg
    Circuits, Systems and Signal Processing, 2000, 19 : 385 - 398
  • [32] LEARNING LAPLACIAN MATRIX FROM BANDLIMITED GRAPH SIGNALS
    Le Bars, Batiste
    Humbert, Pierre
    Oudre, Laurent
    Kalogeratos, Argyris
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 2937 - 2941
  • [33] Extrapolation of Bandlimited Signals in Linear Canonical Transform Domain
    Shi, Jun
    Sha, Xuejun
    Zhang, Qinyu
    Zhang, Naitong
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (03) : 1502 - 1508
  • [34] The recovery of distorted bandlimited almost-periodic signals
    Sandberg, IW
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2000, 19 (05) : 385 - 398
  • [35] Regularized Sampling of Multiband Signals
    Selva, J.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (11) : 5624 - 5638
  • [36] Random Sampling and Reconstruction of Sparse Time-and Band-Limited Signals
    Li, Song-Hua
    Liu, Zhilong
    Xian, Jun
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2022, 43 (05) : 613 - 629
  • [37] Nonuniform sampling theorems for random signals in the offset linear canonical transform domain
    Bao, Yi-Ping
    Zhang, Yan-Na
    Song, Yu-E
    Li, Bing-Zhao
    Dang, Pei
    2017 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC 2017), 2017, : 94 - 99
  • [38] Effect of Random Sampling on Noisy Nonsparse Signals in Time-Frequency Analysis
    Stankovic, Isidora
    Brajovic, Milos
    Dakovic, Milos
    Ioana, Cornel
    2018 26TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2018, : 480 - 483
  • [39] Sampling theorems and error estimates for random signals in the linear canonical transform domain
    Huo, Haiye
    Sun, Wenchang
    SIGNAL PROCESSING, 2015, 111 : 31 - 38
  • [40] Perfect recovery and sensitivity analysis of time encoded bandlimited signals
    Lazar, AA
    Tóth, LT
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2004, 51 (10) : 2060 - 2073