COARSE QUANTIZATION FOR RANDOM INTERLEAVED SAMPLING OF BANDLIMITED SIGNALS

被引:1
|
作者
Powell, Alexander M. [1 ]
Tanner, Jared [2 ]
Wang, Yang [3 ]
Yilmaz, Oezguer [4 ]
机构
[1] Vanderbilt Univ, Dept Math, Nashville, TN 37240 USA
[2] Univ Edinburgh, Sch Math, Edinburgh EH9 3JL, Midlothian, Scotland
[3] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
[4] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2012年 / 46卷 / 03期
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
Analog-to-digital conversion; bandlimited signals; interleaved sampling; random sampling; sampling expansions; Sigma-Delta quantization; TRIGONOMETRIC POLYNOMIALS; ORDER;
D O I
10.1051/m2an/2011057
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The compatibility of unsynchronized interleaved uniform sampling with Sigma-Delta analog-to-digital conversion is investigated. Let f be a bandlimited signal that is sampled on a collection of N interleaved grids {kT + T-n}(k is an element of Z) with offsets {T-n}(n=1)(N) subset of [0, T]. If the offsets T-n are chosen independently and uniformly at random from [0, T] and if the sample values of f are quantized with a first order Sigma-Delta algorithm, then with high probability the quantization error vertical bar f(t) - (f) over tilde (t)vertical bar is at most of order N-1 log N.
引用
收藏
页码:605 / 618
页数:14
相关论文
共 50 条
  • [1] Random Sampling of Bandlimited Graph Signals From Local Measurements
    Shen, Lili
    Xian, Jun
    Cheng, Cheng
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 2140 - 2144
  • [2] Behavior of the Quantization Operator for Bandlimited, Nonoversampled Signals
    Boche, Holger
    Moenich, Ullrich J.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (05) : 2433 - 2440
  • [3] Sampling of Bandlimited Signals in Fractional Fourier Transform Domain
    Ran, Qi-Wen
    Zhao, Hui
    Tan, Li-Ying
    Ma, Jing
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2010, 29 (03) : 459 - 467
  • [4] Number theoretical error estimates in a quantization scheme for bandlimited signals
    Güntürk, CS
    UNUSUAL APPLICATIONS OF NUMBER THEORY, 2004, 64 : 81 - 94
  • [5] Beyond Nyquist: Efficient Sampling of Sparse Bandlimited Signals
    Tropp, Joel A.
    Laska, Jason N.
    Duarte, Marco F.
    Romberg, Justin K.
    Baraniuk, Richard G.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (01) : 520 - 544
  • [6] Sampling of Bandlimited Signals in Fractional Fourier Transform Domain
    Qi-Wen Ran
    Hui Zhao
    Li-Ying Tan
    Jing Ma
    Circuits, Systems and Signal Processing, 2010, 29 : 459 - 467
  • [7] Efficient Node Selection Strategy for Sampling Bandlimited Signals on Graphs
    Yang, Guangrui
    Yang, Lihua
    Yang, Zhihua
    Huang, Chao
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 : 5815 - 5829
  • [8] Nonuniform sampling of bandlimited signals with polynomial growth on the real axis
    Zayed, AI
    Garcia, AG
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1997, 43 (05) : 1717 - 1721
  • [9] TIME-BASED SAMPLING AND RECONSTRUCTION OF NON-BANDLIMITED SIGNALS
    Alexandru, Roxana
    Dragotti, Pier Luigi
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 7948 - 7952
  • [10] Shannon-type sampling for multivariate non-bandlimited signals
    Chen QiuHui
    Qian Tao
    Li YouFa
    SCIENCE CHINA-MATHEMATICS, 2013, 56 (09) : 1915 - 1934