Preconditioning for accurate solutions of ill-conditioned linear systems

被引:0
作者
Ye, Qiang [1 ]
机构
[1] Univ Kentucky, Dept Math, Lexington, KY 40506 USA
基金
美国国家科学基金会;
关键词
accuracy; error analysis; ill-conditioned linear systems; preconditioning; APPROXIMATE INVERSE PRECONDITIONER; ITERATIVE REFINEMENT; SINGULAR-VALUES; DECOMPOSITION; EIGENVALUE;
D O I
10.1002/nla.2315
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article develops the preconditioning technique as a method to address the accuracy issue caused by ill-conditioning. Given a preconditionerMfor an ill-conditioned linear systemAx=b, we show that, if the inverse of the preconditionerM(-1)can be applied to vectorsaccurately, then the linear system can be solvedaccurately. A stability concept calledinverse-equivalentaccuracy is introduced to describe the high accuracy that is achieved and an error analysis will be presented. Numerical examples are presented to illustrate the error analysis and the performance of the methods.
引用
收藏
页数:18
相关论文
共 29 条
[1]  
Alfa AS, 2002, MATH COMPUT, V71, P217, DOI 10.1090/S0025-5718-01-01325-4
[2]  
Bai Z., 2000, Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide
[3]   COMPUTING ACCURATE EIGENSYSTEMS OF SCALED DIAGONALLY DOMINANT MATRICES [J].
BARLOW, J ;
DEMMEL, J .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1990, 27 (03) :762-791
[4]   A sparse approximate inverse preconditioner for nonsymmetric linear systems [J].
Benzi, M ;
Tuma, M .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 19 (03) :968-994
[5]   A sparse approximate inverse preconditioner for the conjugate gradient method [J].
Benzi, M ;
Meyer, CD ;
Tuma, M .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1996, 17 (05) :1135-1149
[6]   ACCELERATING THE SOLUTION OF LINEAR SYSTEMS BY ITERATIVE REFINEMENT IN THREE PRECISIONS [J].
Carson, Erin ;
Higham, Nicholas J. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (02) :A817-A847
[7]   A NEW ANALYSIS OF ITERATIVE REFINEMENT AND ITS APPLICATION TO ACCURATE SOLUTION OF ILL-CONDITIONED SPARSE LINEAR SYSTEMS [J].
Carson, Erin ;
Higham, Nicholas J. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2017, 39 (06) :A2834-A2856
[8]   EFFECTIVELY WELL-CONDITIONED LINEAR-SYSTEMS [J].
CHAN, TF ;
FOULSER, DE .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1988, 9 (06) :963-969
[9]   Computing the singular value decomposition with high relative accuracy [J].
Demmel, J ;
Gu, M ;
Eisenstat, S ;
Slapnicar, I ;
Veselic, K ;
Drmac, Z .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1999, 299 (1-3) :21-80
[10]   Accurate SVDs of weakly diagonally dominant M-matrices [J].
Demmel, J ;
Koev, P .
NUMERISCHE MATHEMATIK, 2004, 98 (01) :99-104