The scalar curvature deformation equation on locally conformally flat manifolds of higher dimensions

被引:0
作者
Yan, Yu [1 ]
机构
[1] Houghton Coll, Dept Math & Comp Sci, Houghton, NY 14744 USA
关键词
scalar curvature; conformal deformation; uniform estimates;
D O I
10.2140/pjm.2008.237.373
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the equation Delta(g)u -(n - 2)/(4(n - 1)) R(g) u + Ku(p) = 0 for p in 1 + zeta <= p <= (n + 2)/(n - 2) on locally conformally flat compact manifolds (M-n, g). We prove that when the scalar curvature R(g) 0 and n >= 5, under suitable conditions on K, all positive solutions u with bounded energy have uniform upper and lower bounds. In our previous 2007 paper, we also assumed this energy bound condition for the uniform estimates in the lower-dimensional case. We now give an example showing that this condition is necessary.
引用
收藏
页码:373 / 398
页数:26
相关论文
共 16 条
[1]  
[Anonymous], ELLIPTIC PARTIAL DIF
[2]  
Druet O, 2004, INT MATH RES NOTICES, V2004, P1143
[3]   CONFORMAL METRICS WITH PRESCRIBED SCALAR CURVATURE [J].
ESCOBAR, JF ;
SCHOEN, RM .
INVENTIONES MATHEMATICAE, 1986, 86 (02) :243-254
[4]  
Li YY, 1996, COMMUN PUR APPL MATH, V49, P541, DOI 10.1002/(SICI)1097-0312(199606)49:6<541::AID-CPA1>3.0.CO
[5]  
2-A
[6]   PRESCRIBING SCALAR CURVATURE ON S-N AND RELATED PROBLEMS .1. [J].
LI, YY .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 120 (02) :319-410
[7]   Compactness of solutions to the Yamabe problem. II [J].
Li, YY ;
Zhang, L .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2005, 24 (02) :185-237
[8]   Yamabe type equations on three dimensional Riemannian manifolds [J].
Li, YY ;
Zhu, MJ .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 1999, 1 (01) :1-50
[9]  
Marques FC, 2005, J DIFFER GEOM, V71, P315
[10]  
SCHOEN R, 1984, J DIFFER GEOM, V20, P479